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Abstract— Ovarian cancer has the highest mortality rate of all 

gynecologic cancers, which may be attributed to an often late 

stage diagnosis, when the cancer is already metastatic, and rapid 

development of treatment resistance. We propose that the 

metastatic disease could be better characterized by observing 

interactions within the microenvironmental niche of the primary 

site that shapes the tumor’s early phenotypic progression. We 

present a mechanistic mathematical model of ovarian cancer 

that considers spatial interactions between tumor cells and 

several key stromal components. We demonstrate how spatial 

biomarker imaging data from the primary tumor can be 

analyzed to define a patient-specific microenvironment in the 

mathematical model. We then show preliminary results, using 

this model, that demonstrate how differences in the niche 

composition of a tumor affects phenotypic evolution and 

treatment response.  

I. INTRODUCTION 

Ovarian cancer detected before becoming metastatic has a 
5-year survival rate of 93%. However, early detection before 
metastases occur is challenging for a variety of reasons; 
nevertheless, only 15% of cases are discovered in an early 
stage [1]. The majority of patients (85%) present with Stage 3 
or 4 cancer and excessive metastases into the peritoneum, the 
lining of the cavity between the visceral organs and the 
abdominal wall [2], [3]. Intraperitoneal metastases are difficult 
to treat, and recurrence is frequent, with only ~29% survival at 
5 years [1]. While many patients may have their cancers 
respond to initial and subsequent therapies, the tumor will 
eventually become treatment-resistant. 

To better understand why resistance emerges it is crucial 
to elucidate the complex interplay between the tumor 
phenotypes and their microenvironment that drives tumor 
evolution. All ovarian cancers share a common growth pattern, 
in which the cancer first develops in the fallopian tube or on 
the ovaries. Subsequently it metastasizes into the peritoneal 
cavity either through the basement membrane or by exfoliation 
into the peritoneal fluid [2], [4]. Occasionally metastatic sites 
also form in more distant locations, such as the brain, liver, or 
lung [2], however this occurs in only ~15% of patients [5]. The 
cells forming the seeds for more distant metastases are derived 
either from the primary tumor, or from a secondary site in the 
peritoneum [6]. Thus, we hypothesize that the 
microenvironmental influences (i.e. niche) of the primary 
tumors drives the early evolution of ovarian tumor cells and 
can inform how cells might respond in metastatic sites when 
treatment is applied. 

In the following, we present a mechanistic mathematical 
model, developed during the 7th Integrated Mathematical 
Oncology (IMO) workshop, which aims to elucidate this 
interaction between the tumor, its microenvironment, and 

treatment. Our approach proposes to integrate patient-specific 
multiplexed imaging of biopsies, to delineate specific 
microenvironmental niches in the tumor, and mathematical 
modeling, to make predictions for tumor response based on 
those niches. We believe that through this combination of 
multiplexed imaging and mechanistic modelling it will be 
possible in the future to perform personalized in silico testing 
to delineate the drivers in a patient’s tumor ecosystem [7], and 
provide guidance and predictive tools for the clinic (e.g. [8]).  

II. VASCULAR AND IMMUNE CONSIDERATIONS IN OVARIAN 

CANCER 

Many stromal agents play a role in the development of ovarian 

cancer such as vasculature, collagen, fibroblasts, cytokines, 

and T-cell infiltration [2], [9], [10]. The role of all of these 

factors are challenging to experimentally dissect, as they form 

a complex, interlinked system (see [9], [11] for a review). For 

simplicity, we only outline what we assume to be the most 

important factors: the vasculature and the immune response. 

This will motivate the analysis and model of the tumor-stroma 

interactions at the primary site, which are discussed in the 

remainder of this report. 

Despite the numerous stromal factors at play in cancer, a 

key factor with a critical role involves the creation and 

regulation of tumor vasculature. Ovarian cancers have the 

capacity to grow to more than 40 times the size of the ovary, 

finding the room to expand into the peritoneal cavity [12]. 

However, the diffusion limit of oxygen imposes strict size 

limits on avascular tumors, so persistent vessel recruitment 

(angiogenesis) is pivotal for continued tumor growth [13]. 

One of the key mechanisms used by tumors to induce 

angiogenesis is the production of a signaling molecule called 

Vascular Endothelial Growth Factor (VEGF), which also 

plays a significant role in physiologic angiogenesis of the 

female reproductive cycle [12]. As such, VEGF has been 

found to be an important predictive marker in various ovarian 

and uterine pathologies, including ovarian cancer, with high 

VEGF levels being associated with poorer survival rates [12], 

[14], [15]. 

The immune system also plays an important role in shaping 

the growth and evolutionary trajectory of the tumor. 

Cytotoxic T-cells are able to detect and remove aberrant cells, 

and have long been recognized as key effectors in tumor 

surveillance and prevention [16]. As such there are strong 

evolutionary forces acting on tumors to develop mechanisms 

to evade or manipulate the immune-surveillance [16]. Given 

the remarkable host of immune-evasion strategies displayed 

by ovarian tumors, this indicates that immune-pressure is 

likely to play a defining role in ovarian tumor evolution. One 
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of the best understood mechanisms to overcome predation by 

cytotoxic T-cells is through the over-expression of 

programmed cell death ligand 1 (PD-L1) by the tumor. By 

interaction with its receptor on the T-cell, this ligand prevents 

the T-cell from killing the cancer cell, and can further result 

in deactivation of the T-cell [17]. The quantity and ratios of 

different immune cells and the expression of immune 

checkpoint regulatory ligands on tumors (e.g. PDL1 

expression) have been observed to correlate with ovarian 

cancer virulence and prognosis [18], [19]. 

Both the vasculature and immune response largely 

influence and are influenced by ovarian cancer. However, the 

impact on disease progression and response to treatment is not 

just determined by summing up the impact of each. In 

addition to the spatial distribution of these factors, they can 

influence each other and the dynamics of the tumor in a non-

linear fashion. For example, the pro-angiogenic molecule 

VEGF has suppressor effects on the immune system [20]. To 

better understand the interactions and dynamics involved, we 

propose the following framework to quantify spatial 

distributions of cells within the primary ovarian cancer tissue 

and build a mathematical model that incorporates this spatial 

information to make predictions of cancer progression and 

treatment response. 

III. MODELING APPROACH 

In this section, we define the key interactions between tumor 

cells and their microenvironment, build a preliminary model 

to simulate these interactions, detail the methodology for 

defining the patient-specific microenvironmental niche from 

imaging data, and show some preliminary results on how 

different niches can affect tumor growth, evolution, and 

response to treatment. 

A. Defining the Model Tumor-Stromal Interactions 

To gain a first understanding of the influence that stromal 

factors have on tumor evolution in primary ovarian cancer, 

we used the simplified model of tumor promotive and 

suppressive actions of vasculature and immune-surveillance 

outlined in section II and depicted in the diagram in Figure 1. 

In normal tissue, blood vessels both supply nutrients that will 

allow cells to proliferate and are the conduits for release of 

the tumor suppressing immune cells. This already sets up a 

trade-off for optimal tumor growth in the tissue. But within 

this spatially and temporally variable environment, tumor 

cells could also evolve by changing their phenotype. Three 

critical aspects of cell behavior are modeled: i) its VEGF 

production, ii) its PD-L1 expression, and iii) its ability to 

survive low nutrient (oxygen, glucose, amino acids) 

conditions. These cell phenotypes were chosen because of 

their complex tumor-environmental feedback, which will be 

explained below. 

Cancer cells can recruit new vasculature by secreting 

VEGF. This niche construction by the tumor cells in turn 

increases the supply of nutrients, which promotes tumor 

growth. At the same time, vasculature releases T-cells, which 

predate on cancer cells. However, through the expression of 

PD-L1, a cancer cell can suppress the T-cell to avoid being 

killed. A third option for a cell to evolve is to lower the risk 

of extinction by becoming quiescent. By adopting a more 

 
Figure 1. Interactions between cancer cells and their environment 

in our model. Cancer cells use nutrients from blood vessels to 

grow and can be killed by T-cells, but they can also evolve 

adaptive traits. Cancer cells can secrete VEGF to recruit more 

blood vessels, express PD-L1 to avoid predation by T-cells and 

employ a quiescent strategy to avoid apoptosis in low nutrient 

areas. 

 
Figure 2. Implementation of the modeling framework. There are 

three types of agents: cancer cells (colored by phenotype), blood 

vessels (red), and T-cells (green) shown in the top panel. Cancer 

cells can evolve to adopt different phenotypes, reflected by their 

color (see legend). The concentrations of nutrients supplied by the 

blood vessels is shown in the lower panel (pink: high, black: low). 
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dormant state the cell will not die as easily when nutrients are 

limited. It can therefore survive where tumor cells are dense 

and vasculature is low, but this comes at a cost of having a 

slow turnover even when nutrients are abundant. We then 

incorporate this system of interactions into a hybrid agent-

based model. 

B. A Hybrid Agent-Based Model 

The model uses a 2-D hybrid cellular automata system 

implemented using the HAL framework in Java [21]. It 

contains both off-lattice agents (for cancer cells, T-cells, and 

vasculature) and continuous fields (for nutrient and 

chemotherapeutic drug concentrations). Simulations start 

with blood vessels and T-cells randomly distributed across the 

domain to define the stromal niche. A small tumor is 

initialized in the center of the domain. An example of the 

model setup is shown in Fig. 2.  

 In order to reduce the complexity of the model we represent 

the various nutrients used by cells (e.g. oxygen, glucose, 

amino acids) as a single resource. This resource is supplied by 

blood vessels and consumed by the cells at a fixed rate. Blood 

vessels in our model are represented by discrete agents and 

are dynamic in space and time. If the cell density around a 

vessel becomes too large, vessels will either be pushed into 

free space (if available) or collapse. New vessels are formed 

at a rate that increases with a higher local tumor burden and a 
higher expression of VEGF in the local vicinity. T-cells are 

also represented as individual agents. They originate from 

blood vessels and move in the domain in a Brownian fashion. 

If they are within a given radius of a cancer cell they will kill 

the cell with a probability that is inversely proportional to the 

level of PD-L1 expression. Reflecting the biology, T-cells can 

only kill a limited number of cancer cells before becoming 

exhausted and dying. 

 The third discrete agent in our model are the cancer cells. 

Depending on the amount of resources available in the 

environment and its phenotype, cancer cells will proliferate 

(high resource), quiesce (low resource), or die (very low 

resource). Each cancer cell is characterized by the following 

three traits: 1) the amount of VEGF it produces (promoting 

vasculature), 2) its PD-L1 expression (which lowers its 

probability of being killed by a T-cell), and 3) its quiescence 

range (the range of nutrient levels under which it is quiescent). 

Cells with greater quiescence range can survive under lower 

nutrient levels but also need higher nutrient levels to 

proliferate. Each trait is modelled as a value between 0 (no 

production/expression/interval width) and 1 (maximal 

production/expression/interval width). At each division, a 

mutation can occur with some probability 𝜇, which will 

randomly perturb one of the three trait values. 

Chemotherapy kills cells in the model proportional to the 

amount of drug at its location and the rate of cell proliferation. 

The concentration of nutrient and chemotherapy are modelled 

as continuous functions, whose spatiotemporal evolution is 

governed by partial differential equations (PDEs). The PDEs 

are solved numerically using a finite difference scheme, and 

the value experienced by each cell is interpolated from the 

computed solution using linear interpolation.  

C. Defining the Stromal Niche 

In order to gain insight into the type of environments that 

might be present in the primary tumor, we can use novel 

multiplexed imaging to generate spatial maps of different 

cellular or environmental features, as illustrated in Fig. 3. 

Shown is a 1mm punch biopsy from an epithelial ovarian 

tumor collected at the Moffitt Cancer Center. The tissue was 

imaged for 37 different cellular markers using imaging mass 

cytometry [22], performed by the Fluidigm Corporation 

(South San Francisco, CA, USA). Unfortunately, the set of 

markers did not include any of the key elements in our model. 

However, for illustration of the method, the set of panels in 

Fig. 3A shows the observed intensities of three different 

 
Figure 3. Niche analysis using multiplexed imaging data. A) Imaging of separate biomarkers. B) Segmentation of cells. C) Composite 

of markers defines a stromal map that can parameterize and initialize the spatial mathematical model. 
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markers: E-cadherin – marker of epithelial cells, CD44 – 

marker of cell adhesion, and Collagen I – marker for most 

abundant collagen type. From this raw data it is possible to 

generate maps of the tumor environment, by segmenting the 

cells and analyzing their molecular expression profile. In the 

middle panel we show such a segmentation. The cells were 

segmented by first identifying their nuclei from the Histone 

stain, followed by estimating the cell outlines using Voronoi 

Tessellation (Fig. 3B). For more details on the individual cell 

phenotypes we take the mean level of each of the markers 

present within the cell’s area to identify tumor and stroma 

components of the tissue (Fig. 3C). The so obtained spatial 

distribution of different cell types can then be further analyzed 

using, for example, a Strauss point process model to identify 

and characterize environmental niches. We conclude that 

great detail on the composition of the tumor 

microenvironment can be obtained from multiplexed 

imaging. However, this information is static, and does not 

provide details about the underlying dynamics.  

This kind of patient-specific spatial map of a tumor’s niche 

can be obtained from imaging and used to parameterize and 

initialize the mathematical model. This would allow us to 

simulate the dynamics that could potentially arise from 

different treatments within a unique empirical spatial 

composition. Because we did not have data on the specific 

markers needed for this model, a couple of distinct 

microenvironmental niches were created to demonstrate how 

the tumor context can affect tumor growth and treatment 

response. 

D. Preliminary Computational Results 

Tumors were grown in 2 microenvironmental niches. Niche 

A was poorly vascularized but also had a low rate of immune 

infiltration whilst Niche B was highly vascularized but had a 

high rate of immune infiltration. For each case, the tumors 

were grown to 800 cells, at which point chemotherapy was 

applied for 10 days. This drug schedule was repeated every 

50 days until reaching 350 days. The results are shown in 

Figure 4 for Niche A (Fig. 4A) and Niche B (Fig. 4B).  

Niche A had very low resources, so the tumor grew slower 

than in Niche B where the high vascularization provided an 

abundance of resources and caused very rapid growth. The 

tumor in Niche B also grew more uniformly outward 

compared to the tumor in Niche A, which tended to bulge 

outward upon developing higher levels of expression of 

multiple phenotypes. However, once chemotherapy was 

applied, the slow growing tumor in Niche A did not show 

much response, while the faster growing tumor in Niche B 

decreased in size. This response might be due mostly to the 

difference in vascular density - more vessels delivered more 

drug to the tumor.  

 

 
Figure 4. Tumors were grown in two environments: A) a poorly vascularized niche with low immune infiltration and B) a well-

vascularized niche with high immune infiltration. Each tumor is grown to 800 cells, and then chemotherapy is applied for 10 days at 

every 50 days interval. The leftmost graphs show the tissue composition in terms of the total number of tumor cells, the number of blood 

vessels, and the number of immune cells along with the applied chemotherapy schedule. The middle plots show the spatial compositions 

colored according to their relative expression level just prior to treatment initiation (T1), and then again after 2 cycles of treatment (T2). 

The rightmost plot shows the average expression levels for each of the 3 resistance mechanisms: VEGF, PDL1, and the quiescence 

phenotype. The error bars show the standard deviation from 10 runs. 
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There were also differences in the tumor compositions in 

each niche. For both tumors, the highest expression level was 

the quiescence type, followed by PDL1, and then VEGF. 

However, there was a difference in the expression levels and 

their distributions amongst the cells. The low resource 

environment of Niche A selected for higher expression of all 

resistance mechanisms during growth with more variance 

than in Niche B. The tumor in Niche A took a longer time to 

reach the same size before chemotherapy is applied, so the 

proliferation rate, and therefore, also the rate of accumulating 

higher expression, was also low. However, combined with a 

lack of immune predation, Niche A allowed higher expression 

levels to accumulate, which slowed turnover and made the 

cells less responsive to chemotherapy. Perhaps a tumor in this 

niche would respond better to a more targeted therapeutic 

approach. Nevertheless, we did ignore the fact that cells 

evolved in the primary might behave differently when 

encountering a different microenvironment at the metastatic 

site and instead assumed that cells coming from a specific 

primary niche might seek out a comparable metastatic niche. 

This decoupling could be important and should be considered 

in future studies. 

IV. CONCLUSION 

In this report, we presented an approach to better understand 

the role of stroma in the evolution and treatment response of 

ovarian cancers. Tumor-stroma interactions, which are often 

neglected in models of cancer, can significantly shape the 

evolution of tumor cell phenotypes, and ultimately affect 

treatment outcomes. Here, we identified several key stromal 

influences on ovarian cancer and built a hybrid agent-based 

model to simulate tumor growth and chemotherapy treatment. 

We outlined methods for analyzing spatial data using mass 

cytometry data from ovarian cancer tissue samples to 

investigate the presence of different niches in the primary 

tumor. Given an appropriate set of stromal markers, the 

method presented here could be extended to provide an in-

depth analysis of spatial interactions and allow for patient 

specific tests of treatment plans.  

 The time frame of the workshop was too short for large 

scale data analysis or integration of the data into the model, 

but we were able to explore with the model how 2 different 

niches affected tumor growth, composition, and response to 

treatment. We found that a high density of blood vessels and 

strength of immune-surveillance caused faster growth before 

treatment, but a larger population decline during treatment 

application compared to the niche with a low density of blood 

vessels and low immune-surveillance. Furthermore, we found 

that the low resource environment selected for higher 

expression levels of all phenotypes. Our simulations confirm 

that niche can drive phenotypic evolution and therefore affect 

tumor composition and treatment response. Overall, we hope 

that this report illustrates that the spatial structure of non-

tumor components has great potential to affect tumor 

composition. We envision that future computational models 

will incorporate more patient-specific stromal interactions 

guided by multiplexed imaging data to improve 

understanding of ovarian cancer and personalize treatment 

response predictions. 
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