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the impact of proliferation-
migration tradeoffs on phenotypic 
evolution in cancer
Jill A. Gallaher, Joel s. Brown & Alexander R. A. Anderson  

Tumors are not static masses of cells but dynamic ecosystems where cancer cells experience constant 
turnover and evolve fitness-enhancing phenotypes. Selection for different phenotypes may vary with 
(1) the tumor niche (edge or core), (2) cell turnover rates, (3) the nature of the tradeoff between traits, 
and (4) whether deaths occur in response to demographic or environmental stochasticity. Using a 
spatially-explicit agent-based model, we observe how two traits (proliferation rate and migration 
speed) evolve under different tradeoff conditions with different turnover rates. Migration rate is favored 
over proliferation at the tumor’s edge and vice-versa for the interior. Increasing cell turnover rates 
slightly slows tumor growth but accelerates the rate of evolution for both proliferation and migration. 
The absence of a tradeoff favors ever higher values for proliferation and migration, while a convex 
tradeoff tends to favor proliferation, often promoting the coexistence of a generalist and specialist 
phenotype. A concave tradeoff favors migration at low death rates, but switches to proliferation at 
higher death rates. Mortality via demographic stochasticity favors proliferation, and environmental 
stochasticity favors migration. While all of these diverse factors contribute to the ecology, 
heterogeneity, and evolution of a tumor, their effects may be predictable and empirically accessible.

Tumors are thought to consist of 3 major populations of cells: actively dividing, quiescent and necrotic. Under 
idealized environments, such as the experimental system of spheroids1, a fast growing tumor becomes dense and 
quickly outgrows the supply of oxygen and nutrients. This gives rise to a layered tumor anatomy that consists of 
concentric regions encompassing the 3 populations (e.g. Fig. 1A). In real tumors, the geometry of these regions 
appears far more irregular and disordered (e.g. Fig. 1B), reflecting a more complex and dynamic environment. 
Regardless, it is a tempting simplification to view the tumor edge as the place where tumor cells primarily divide 
rather than die, the interior as generally quiescent with few births and deaths, and the necrotic zone where tumor 
cells mostly die.

Such a perspective has led to models of tumor growth and evolution where tumor cells expand to occupy 
space, either explicitly2–11 or implicitly12–15, as different clonal lineages proliferate and expand at different rates. 
When these models include evolution, one can determine the properties of tumor cells that are favored by natural 
selection. Such is the case for models that examine the joint evolution of proliferation and migration2,3,7. However, 
in the absence of cell turnover, such models can only show changes in the frequency of different clonal lineages 
while the replacement of less successful lineages by more successful ones is ignored.

In reality, the turnover of tumor cells via proliferation and cell death occurs constantly throughout the entirety 
of the tumor. Turnover rates may be high, as high as every 10 days for the interior of breast cancer tumors. A 
tumor that looks static with an unchanging volume might actually be very dynamic as proliferation and apoptosis 
occur in parallel throughout a tumor. High but balanced proliferation and death rates have been measured in 
some cancers16–19. Furthermore, stimulatory factors from dying cells can cause compensatory proliferation of 
surviving cells20, and an increased proliferation along with an increased death rate may suggest a more aggressive 
disease18,19.

High turnover rates facilitate evolution by natural selection21. This “struggle for existence” is seen in all organ-
isms, and in cancer the cells have the capacity to produce more offspring than can possibly survive. Competition 
for space and resources limits cancer cell densities and population sizes. Limits to growth and cell turnover 
should select for genes and traits associated with proliferation rates and movement. All else equal, the cancer cell 
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lineage with a higher proliferation rate will outcompete and replace one with a slower proliferation rate. However, 
higher proliferation rates will cause local crowding, limitations on resources, and other unfavorable conditions. 
Movement and migration away from such crowding should be favored. Even random migration can be favored 
by natural selection as a means of avoiding over-crowding22. Such migration can be particularly favorable at the 
edge of the tumor, but even in the interior of a tumor, migration may move cells from more to less dense locales.

Many mutation models of cancer progression allow for unconstrained phenotypic improvement2,3,5 or infer 
increased fitness through the number of passenger/driver mutations23,24. Indeed, if both proliferation and migra-
tion enhance the fitness of cancer cells, then natural selection should favor higher rates for both3. Such selection 
will continue to improve proliferation and migration rates simultaneously until a point is reached where there are 
tradeoffs25–27. To improve proliferation rates further necessarily means sacrificing migration and vice-versa28–30. 
In his seminal book on evolution of changing environments, Levins (1967) proposed that the shape of the tradeoff 
curve should influence the evolutionary outcome31. A convex curve may favor a single population with a gener-
alist phenotype whereas a concave curve may favor the coexistence of two specialist populations. Additionally, 
the specific shape of the tradeoff curve can significantly affect the evolutionary trajectory towards this curve32.

The pattern of cancer cell mortality across a tumor may represent just demographic stochasticity or it may 
include environmental stochasticity33. The former happens when cell death is random and exhibits little tem-
poral or spatial autocorrelations. Such patterns of mortality open up numerous but small opportunities for cell 
replacement. Environmental stochasticity happens when the sudden absence of nutrients or the accumulation of 
toxins causes wholesale death of the cells in some region of the tumor. This pattern of cell mortality creates fewer 
but much larger spaces for cell replacement. When regions are subject to catastrophic death (e.g., large or small 
temporary regions of necrosis) the distinctiveness of edge versus interior regions of a tumor are obscured, and 
the evolution of different combinations of proliferation and migration rates may be favored. Strictly demographic 
stochasticity should favor proliferation over migration and vice-versa for environmental stochasticity within the 
tumor.

In what follows, we develop a spatially explicit agent-based model of tumor growth that includes cell turnover 
at both the edge and the interior of the tumor. We use this model to explore the joint evolution of proliferation 
and migration rates by cancer cells in response to: (1) rates of cell turnover, (2) different shapes of the tradeoff 
curve, (3) and different mortality regimes.

The Model
Using an off-lattice agent-based model, we investigated how 2 traits (proliferation and migration) will evolve in 
response to space limitation and the continual turnover of cells. Initially, we start with a single cell in the center of a 
2D circular domain with the least aggressive phenotype: a long cell cycle time and a slow migration speed. Figure 2A 
shows the 4 mm diameter circular space available to the tumor and its starting location. Density-dependence and 
limits to population growth comes from local crowding, similar to the methods presented in Gallaher et al.3. When 
a cell is completely surrounded by neighbors, we assume that it can neither move nor divide. Upon division, each 
daughter cell’s trait may change in one of three ways: it can inherit the same trait as the original cell, or via mutation, 
its trait values for migration or proliferation rate can increase or decrease by a small value, so long as its trait values 
stay within the boundaries of what is evolutionarily feasible. Figure 2B shows the trait space with respect to prolif-
eration and migration, and how an open, convex, or concave boundary in the trait space eliminates possible trait 
combinations. More details on the model specifics can be found in the Methods section.

Results
In the following, we used the model described in the previous section to investigate how proliferation-migration 
tradeoffs and cell turnover affect the evolution of phenotypes over time.

Figure 1. Tumor anatomy in spheroid models and human tumors. (A) Tumor spheroid model. Edge detection 
algorithm finds inner necrotic (green) and outer proliferating (blue) edges. Image provided by Mehdi Damaghi. 
(B) Digital pathology uses pattern recognition on histological sample from actual tumor. The proliferating, hypoxic 
and necrotic regions have the same broad structure but are more intermixed. Image provided by Mark Lloyd.
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Imposing a go-or-grow tradeoff selects for migration during growth. Evolutionarily, we placed 
limits on the set of feasible combinations of migration and proliferation. The boundary of this set represents the 
tradeoff between the two traits. In our simulations, we considered three forms of the tradeoff: open, convex, and 
concave boundary conditions (Fig. 2B). Under an open tradeoff, each trait can achieve a maximum value inde-
pendent of the value of the other trait (no tradeoffs). Under a convex (or concave) tradeoff, the maximum feasible 
values for migration and proliferation occur along a curve that bows outwards (or inwards). Regardless of the 
shape of the boundary, natural selection should favor cancer cells with ever greater migration and proliferation 
rates until reaching the boundary edge. However, the shape of the tradeoff may influence both the evolutionary 
trajectory of the cancer cells, their evolutionary endpoint, and the diversity or variance of trait values among the 
cancer cells.

Ecologically, we first considered the case where there is no cell mortality. In this case, the population of cells 
will divide and migrate until the space is filled completely (see Fig. 3A for the spatial layout). In the absence of 
death, we see rings of cells with different phenotypes within the tumor. While natural selection favors cells with 
greater trait values, these trait values can only arise through successive cell divisions. The least aggressive cells, 
those with the lowest trait values, form the core (cyan color). Towards the outer edges, cells with more aggressive 
traits predominate at the periphery. Cells that mutate with higher proliferation rates can increase in frequency 
where space permits, and cells that mutate with higher migration rates can move into empty spaces where longer 
runs of proliferation are possible. Even as the whole population evolves, each step in this evolution leaves tree ring 
like layers in the tumor. With no cell death, the entire historical record in space and time is preserved.

Once the space has filled, the distribution of cancer cell phenotypes can be seen in Fig. 3B in the form of a den-
sity map. Color intensities correspond to the relative frequency of phenotypes where white indicates an absence 
of cells with that phenotype. As expected, when the tradeoff boundary between migration and proliferation is 
open, the most frequent phenotypes exhibit both fast proliferation and fast migration. However, we did observe 
some variation between replicate simulation runs in the mean proliferation rates due to stochasticity in mutations 
(see Fig. S1 - top), so Fig. 3 shows simulation runs with near average behavior. As the tradeoff boundary changes 
from open to convex to concave, we see natural selection favoring migration over proliferation and a reduction 
in variation between replicate runs. Contrary to expectation, the convex tradeoff boundary did not produce a 
generalist phenotype. Instead there is an apparent coexistence of two cell types: one with high migration but 
moderate proliferation, the other just the opposite. Also, contrary to expectations, a concave tradeoff boundary 
did not promote the coexistence of extreme phenotypes but instead, natural selection favored higher migration 
with little to no improvement in proliferation rates.

The sequence of red dots in Fig. 3B show the evolutionary trajectory over time, of the average values, of prolif-
eration and migration rates within the simulated tumor. Each point gives the average phenotype in increments of 
5 days until the space is filled. From the spacing of the dots, we see that an open tradeoff boundary produces rapid 
evolution, rapid space filling, and the highest level of average proliferation rates. A concave tradeoff boundary 
results in the slowest evolution, slowest space filling, and the lowest average proliferation rate. In going from open 
to convex to concave tradeoff boundaries, the phenotypes become less proliferative. Thus, they divide, evolve, and 
fill space more slowly.

An increased death rate selects for increased proliferation. We examined the eco-evolutionary con-
sequences of cell turnover by incorporating random cell death. Figure 4 shows the results when there is no death 
(top), and a low (middle) and high (bottom) random death rate. The spatial layout is shown to the left, and a 
density map representing the frequency of trait combinations is shown to the right for the 3-month time point. 
The evolutionary trajectory of the average trait values the population took for the first 3 months are overlaid on 
the density map, shown in red, while the black asterisk shows the average phenotype at 12 months.

Figure 2. Mathematical model details. (A) A single cell with the smallest proliferation and migration rates 
centered in a 4-mm radial boundary initializes the simulation. The cell diameter is 20 μm, and its area of 
interaction is defined by a 200 × 200 micron neighborhood (more detail can be found in the Methods section). 
(B) Imposing tradeoffs by bounding the phenotype space. When the whole space is open (thin solid line), all 
phenotypes are allowed. The convex (thick solid line) and concave (dashed line) bound the space as shown. The 
set of evolutionarily feasible traits lies within (fitness set) and on the tradeoff line (active edge). The trait value of 
a daughter cell can mutate up to one unit in any direction as long as it stays within the bounded region.
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With non-zero death rates, the phenotypic evolution has two apparent phases: the first occurs while space is 
relatively sparsely occupied, and the second occurs through cell turnover after the space has filled. During the first 
phase, phenotypic evolution follows a similar trajectory as the case when there is no death (Fig. 3). However, as 
space fills, selection favors faster proliferation rates.

When the cells have completely filled the space, the shape of the phenotypic tradeoff boundary (open, convex 
or concave) strongly influences the endpoint of evolution. Regardless of the death rate, the open boundary favors 
fast proliferation and high migration speeds. However, as space fills migration speeds matter much less than pro-
liferation rates. Mutational drift in the migration trait leads to a lower mean and higher phenotypic variance than 
seen in the proliferation trait. Phenotypes with moderate to low proliferation rates become absent with time. With 
a low death rate, the convex boundary favors the coexistence of a more generalist phenotype with a fast prolifer-
ation phenotype. With a low death rate, the convex boundary sees the generalist phenotype outcompeted by fast 
proliferating cells with lower migration rates. With a low death rate, the concave boundary, as predicted, favors 
the coexistence between cancer cells with fast proliferation (but low migration) and cells with fast migration (but 
low proliferation). With a high death rate, the concave boundary favors cancer cells with high proliferation rates 
at the expense of migration. With no death, replicate runs of the simulation show wide variability in outcomes. 
Variability between replicate runs becomes greatly reduced when death rates increase (Fig. S1). Comparing the 
fitness landscapes for each tradeoff for high death rate and no death shows peaks where each of these phenotypes 
are favored (Fig. 4C).

Spatially clustered death catastrophes select for migration. We introduced significant environ-
mental stochasticity by having all individuals die within a randomly selected 500 μm diameter circular area. This 
regional catastrophe might represent a sudden (and temporary) loss of blood vasculature, immune cell intrusion, 
or pooling of toxic metabolites. While keeping the probability of death constant at one death per week per cell 
(high death rate) we compared three mortality regimes where we varied the fraction of deaths occurring by 
demographic stochasticity (random cell death) relative to environmental stochasticity (catastrophes). The three 
regimens had 0%, 50% and 100% catastrophic death. The results are shown in Fig. 5.

In all cases raising the percent of deaths by catastrophes increases selection for migration, and this is consist-
ent across replicate runs (Fig. S2). For the open tradeoff boundary, this results in a similarly high proliferation 
rate even as the migration rate increases with environmental stochasticity. For the convex tradeoff, there is more 
variance in phenotypic properties. But, as environmental stochasticity increases, migration is favored over pro-
liferation with a very generalist phenotype emerging when all deaths are catastrophic. For the concave tradeoff 
boundary, the average phenotype switches from high proliferation and low migration to low proliferation and 
high migration as environmental stochasticity goes from 0% to 100% of the cause of death. In this case, while 

Figure 3. Joint evolution of migration and proliferation as influenced by three different tradeoff boundaries: 
open, convex, and concave. (A) The spatial layout and (B) the frequency of trait combinations is shown for a 
single representative simulation for each case, where the red points and line mark the average trait values every 
5 days. The background colors correspond to the density of cell traits after reaching capacity; Brightly colored 
areas correspond to high densities, and the completely white area contains no cells. Replicate simulation runs 
are shown in Fig. S1 (top).
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there was little variation between simulation runs at 0% and 100%, a greater spread in mean trait values was seen 
when there was an equal probability of random and catastrophic deaths (Fig. S2 – middle right). The long-term 
steady state values, however, were consistently toward high proliferation rates and low migration speeds.

Discussion
Rates of cell turnover matter. As expected, in our model, increasing the death rate speeds the rate of evolution 
while having little impact on the endpoint of evolution or the equilibrium population size of cancer cells at the 
end of the simulation (12 months). Our off-lattice model places an upper bound on the space available for cells. 
While increasing the death rate opens up space, cells fill it quickly as neighboring cells now have the opportunity 
to successfully proliferate (at even the lowest proliferation rate cells divide once every 50 hours). Longer runs of 
cell proliferation permit the accumulation of mutations that can increase migration and/or proliferation rates. 
However, with no deaths, evolution eventually stops on the interior of the tumor and can only occur along the 
expanding boundary. One sees concentric rings of more highly adapted cells as we move from the center to the 
edge of the tumor. This is not the case when there is continual cell turnover. While slower in the interior than 
edge of the tumor, evolution proceeds with the replacement of less fit individuals by those with either higher 
combined rates of proliferation and migration, or individuals with more successful combinations of traits when 
the trait-tradeoff boundary has been reached.

The results illustrate the direct impact of cell turnover, throughout the habitable regions, on tumor evolu-
tionary dynamics. However, not all ecological and evolutionary models in the literature incorporate cell death 
and cell replacement. The distribution of phenotypes among cancer cells in a tumor represent a balance between 
mutation, drift and selection. With each cell division, mutations can occur that randomly alter proliferation and 
migration. Those generating higher fitness should increase in frequency, but a large amount of heritable variation 
is maintained within the tumor due to the stochastic nature of births, deaths and mutations; the lower the rate of 
cell turnover, the higher the phenotypic variability among cancer cells. In reality, tumors exhibit large amounts 

Figure 4. The effects of the death rate (no death, low, and high) and tradeoff boundaries (open, convex and 
concave) on the evolution of migration and proliferation rates. The probability of death for a single cell is once per 
week (high death rate) and once every two weeks (low death rate). (A) The spatial layout and (B) the frequency 
of trait combinations is shown for a single representative simulation for each case, where the red points and line 
mark the average trait values every 5 days for the first month. The black points show the continued evolutionary 
trajectory up until 3 months. The background colors correspond to the density of cell traits at 3 months; Brightly 
colored areas correspond to high densities, and the completely white area contains no cells. The asterisk shows the 
average trait values at 12 months. Replicate simulation runs are shown in Fig. S1.
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of genetic variation – the extent to which this is maintained by mutation and drift and purged through selection 
remains an open and important question23,34–38.

The edge of the tumor likely offers very different conditions in terms of substrates, normal tissue architecture 
and exposure to the immune system39,40. Hence, a number of agent-based models focus on tumor spatial hetero-
geneity in an environmental context, such as normal cells, stroma, and vasculature4,5,8–10,41,42. Here, we considered 
a much simpler model where all space is equal without regard for the position of blood vessels, and the only 
factor creating heterogeneity is phenotypic drift during division, which depends on the number and dispersion 
of cancer cells. The method of inheritance and how drift is imposed could impact the timescales associated with a 
specific evolutionary trajectory, but this does not affect the steady state values. Furthermore, the model could be 
extended to include other important tissue interactions such as the influence of vasculature, cell adhesion, and an 
immune response. These might impact evolution in interesting ways. Other tradeoffs could also be considered, 
such as proliferation versus survival.

The model aims to specifically address the effects of tradeoffs and cell turnover rates on the speed, trajectory, 
and endpoint of ecological and evolutionary dynamics within an expanding tumor. As it is, our model has two 
rather distinct phases starting from a cell with slow proliferation and slow migration. During the first, natural 
selection favors migration over proliferation as the tumor expands into pristine space, the second favors prolif-
eration over migration once the space has been filled by the cancer cells. This accords with the observation that 
the edge of tumors may select for more “aggressive” cancer cells defined as those more likely to migrate, invade 
surrounding tissue, and perhaps initiate metastases43,44. If instead, the simulations were initiated with either a fast 
proliferation rate and slow migration speed or vice versa, the evolutionary endpoint generally remains the same 
even though the trajectory is different (Fig. S3). There are only a few cases that result in different endpoints from 
different initial conditions. This happens when i) there is no death, so the space gets filled without achieving the 
evolutionary endpoint, or ii) there is 100% catastrophic death with a concave tradeoff. For the latter case, when 
starting with a fast proliferation rate and a slow migration speed the cells remain near the initial phenotype, 
because even with a more optimal global phenotype (fast migration and slow proliferation) fast proliferation is 
still selected over the intermediate phenotypes along the trajectory (slow proliferation and slow migration).

There are direct parallels, of our results to ecological systems in which mortality can take the form of the 
stochastic death of an individual (demographic stochasticity) or the catastrophic death of a group of individuals 
(environmental stochasticity). In forests, for instance, individual deaths of trees create small gaps in the canopy 
whereas the blowdown of a group of neighboring trees create large gaps. The size and nature of gaps can result 
in the slower or faster regeneration of different tree species45. Our model considers the eco-evolutionary conse-
quences of different size gaps in the tumor created by either demographic or environmental stochasticity (while 
holding overall mortality rates constant). As seen in many natural systems, small gaps select for proliferation over 
dispersal and vice-versa for large gaps46. While understudied, temporal variability in local blood flow, immune 
intrusion, hypoxia, and Ph likely result in varying degrees of local and catastrophic mortality followed by oppor-
tunities for recolonization. Histology from biopsies or radiographic imaging of tumors produce a static snapshot 

Figure 5. The percent of death that is random vs catastrophic is varied. The top row has 0% catastrophic and 
100% random death, the middle row, 50% catastrophic and 50% random death, and the bottom row, 100% 
catastrophic and 0% random death. The death rate is once per week per cell (same as the high death rate from 
Fig. 4). (A) The spatial layout and (B) the frequency of trait combinations is shown for a single representative 
simulation, where the red points and line mark the average trait values every 5 days for the first month. The 
black points show the continued evolutionary trajectory up until 3 months. The background colors correspond 
to the density of cell traits at 3 months; Brightly colored areas correspond to high densities, and the completely 
white area contains no cells. The asterisk shows the average trait values at 12 months. Replicate simulation runs 
are shown in Fig. S2.
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that cannot track the fates of individual cells within small regions of a tumor. Our model provides a platform to 
study how death affects the competition of cells for space and their subsequent evolution.

Tradeoffs between dispersal and survival or fecundity and dispersal are common in natural plant and animal 
species47,48, and several lines of evidence empirically suggest tradeoffs between the traits proliferation versus 
migration in cancer cells49–51. Previous theoretical models have shown how proliferation-migration tradeoffs via 
phenotypic switching between 2 states can impact tumor growth and evolution13,28,29. Tradeoffs in our model are 
represented by boundaries rather than a switch so that heterogeneity is a spectrum of phenotypes gained on divi-
sion existing within an allowed trait space. Cancer cells may also experience Allee effects when a critical number 
of neighboring cells are required for a cell to survive and proliferate52. In this case, cell migration from a neigh-
borhood may cause the remaining cells to see a decline in fitness. Our model does not include such an Allee effect. 
But there is competition for space, and any movement of an individual away from a neighborhood results in a 
small public good of an increased probability of proliferation to the remaining cells. In the absence of tradeoffs, 
natural selection should favor improvements in all traits that enhance fitness. As expected in our model, the lack 
of a tradeoff saw rapid increases in both proliferation and migration. With demographic stochasticity and filled 
space, migration is no longer under strong selection, so at this point, mutation and drift created a lower mean 
migration rate with a large phenotypic variance. Generally, a convex tradeoff selected for a generalist phenotype. 
Under demographic stochasticity this resulted in high phenotypic variance and sometimes the dominance of high 
proliferation, low migration phenotypes. Environmental stochasticity selected for the more generalist phenotype. 
A concave phenotypic tradeoff boundary always selected for low proliferation, high migration phenotypes during 
the tumor’s expansion phase. These were then replaced by high proliferation, low migration phenotypes once the 
tumor achieved maximum size. The only exception occurred with environmental stochasticity where the high 
migration phenotype continues to be favored. Experiments that establish the cost of resistance on proliferation 
of cancer cells often require conditions of strong nutrient limitation53–56. In addition, establishing the nature 
of tradeoffs between migration and proliferation should require the use of invasion/migration assays57–62. Such 
experiments could select for extreme or slow migrators and subsequently observe proliferation rates or select 
for extreme slow or fast proliferators and subsequently observe migration to determine whether tradeoffs exist.

A number of fitness metrics can be used for mathematically modelling cancer cell population dynamics63. 
These include maximizing some balance of proliferation rates and death rates. In our simulations, the death rate 
was a constant regardless of phenotype. Hence, natural selection favors phenotypes that maximize the probability 
of cell division. However, this probability depends not only on the proliferation rate but the probability of having 
space around the cell to proliferate. Increasing the proliferation rate of a cell directly impacts its fitness. Increasing 
the migration rate of a cell can indirectly impact tumor fitness by opening up space and keep more neighbor-
ing cells cycling, even if they are proliferating more slowly. During the expansion phase of the tumor, available 
space is relatively large, and the space gained by increasing migration is also very large. Selection will be strong 
for both proliferation and migration but relatively stronger for migration. When the space in the tumor core is 
completely filled, both the available space and the fitness advantage gained by increasing migration goes to zero. 
Hence there is no longer positive selection for migration. By creating many small gaps, demographic stochasticity 
creates space and thus maintains selection for proliferation, and because the spaces are small, there are no bene-
fits to migration. Environmental stochasticity creates the same amount of total space over time as demographic 
stochasticity, but this space is more contiguous, so migration is favored as a means of exploiting empty regions. 
Thus, the fitness advantage gained by migration will be larger and positive when large gaps are present, and there 
will be positive selection for both proliferative and migratory phenotypes, but a larger selection for migratory 
phenotypes. Increasing cell turnover directly affects cell fitness, so the indirect tumor fitness gains of increasing 
migration do not matter as much as individual cell survival so there is positive selection for faster proliferation. 
Some of these properties will be general to all organisms (e.g., cane toads64, and house sparrows spreading in 
Kenya)65, and others just to cancer because it is a densely packed, asexual, and single-celled organism.

Our model has similarities to other models and systems where selection balances two traits. In natural systems 
this can take the form of seed dispersal versus dormancy in annual plants where the former transports the indi-
vidual spatially and the latter temporally to less crowded and more favorable places66,67. In dispersal-dormancy 
models, the traits may exhibit tradeoffs via seed size, seed coat thickness, and features that enhance dispersal such 
as burrs and samara (wings). In cancer, a number of agent-based models consider vector-valued traits. These 
include degree of glycolytic respiration (Warburg effect) and tolerance to acidic conditions. While not necessarily 
linked through tradeoffs, the two traits become co-adapted as increased glycolysis promotes acidic conditions 
necessitating the evolution of acid tolerance5. Spatial models often see rings of different trait values extending 
from the interior to the tumor’s boundary3,4,6. In these models, selection happens solely at the tumor edge where 
there is space to proliferate. In relation to these works our model invites spatially-explicit investigations into how 
traits evolve in response to population spread, death rates, and demographic versus environmental stochasticity. 
It emphasizes the critical need to estimate cell turnover via measurements of both death and proliferation rates. A 
variety of markers and metrics exist for measuring proliferation (e.g. Ki67, mitotic index) and death (e.g. caspases, 
TUNEL assay). However, these are often just surrogates, rarely measured simultaneously, and generally cannot be 
measured in vivo. Because of these challenges, most data simply describe net tumor growth (i.e. doubling times). 
We advocate deconstructing this net metric into distinct fractions of proliferating, quiescent, and dying. To study 
evolving traits such as proliferation-migration tradeoffs, we see a need for non-destructive sensors/markers of cell 
processes that can be measured through both space and time.
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Methods
We created a simple agent-based model of tumor growth to investigate evolving phenotypes under different con-
straints. The phenotype is defined as a combination of two traits: the intermitotic time τ, where τ = [10,40] hours, 
and the migration speed ν, where ν = [0,20] μm/h. The simulation is initialized with one cell in the least aggres-
sive state (τmax = 40 h and νmin = 0 μm/h) centered in a 4 mm circular tissue (Fig. 2A). This cell, and every subse-
quent cell starts with the specified intermitotic time and counts down at each time step (every minute) until 
reaching zero. At this point, the cell will split into two daughter cells, keeping one cell at the original position and 
placing the other 1 diameter away at a random angle. Each daughter cell randomly inherits traits within a range 
of the parental cell’s traits (τdaughter = τmother ± (0, 4.5) h and νdaughter = νmother ± (0, 3) μm/h) as long as it lies within 
the boundary of traits defined by the tradeoff (Fig. 2B). As long as a cell is not undergoing division during the 
time step, it will move at its specified speed throughout the 2-dimensional space. The movement of a cell follows 
a persistent random walk: it will move for a persistence time randomly drawn from a normal distribution p =   
(80 min,40 min) and then turn at a random angle before starting over with a new persistence time. The cells can 
move off-lattice in the 2D space, meaning that they are not confined to reside in a regular gridded structure. A 
major problem with off-lattice models is that checking for one cell’s interactions amongst all other cells becomes 
extremely computationally inefficient as the number of cells increase. In order to alleviate this cost, we create a 
grid (67 μm × 67 μm) that defines neighborhoods within the space. At the top of each frame, all cells are assigned 
a neighborhood according to their position. Each cell will only check for interactions within a Moore neighbor-
hood of this grid (its current neighborhood as well as its 8 surrounding neighborhoods – see Fig. 2A). If a cell 
intersects another cell in space it will be assigned a new random direction and a new persistence time. If a cell 
intersects with the boundary of the space (circle of diameter ~2.7 mm) or is completely surrounded (there is no 
room for cell division without overlap) it will stop progressing through the cell cycle and stop migrating.

Bounding the trait space. We limit the possible trait combinations according to i) no tradeoff (open), ii) a 
convex bound, and iii) a concave bound (see Fig. 2B). Each time a cell divides, new traits are determined giving 
each option (improve, stay the same, or diminish) the same weight. If the current trait is already on the boundary 
of trait space, then only options that respect this bound are considered and weighted equally. For the convex case, 
the forbidden region is created by making a circular arc from the two extreme values where fitness is greatest for 
each trait but worst for the other (i.e. τmin = 10 h and νmin = 0 μm/h and τmax = 40 h IMT and νmax = 20 μm/h). 
The trait combinations with the shortest intermitotic times and fastest migration speeds are not allowed. For the 
concave case, the forbidden region cuts off this space as well, but the circular arc is created using the same points 
with opposite concavity.

Cell death. Cell death either occurs randomly distributed or regionally clustered (catastrophic). The prob-
ability of death is split between these two types of death with either all random, all catastrophic, or 1:1 mix of 
random and catastrophic. Random death occurs with a given probability for every cell at every frame. When there 
are catastrophic death events, all cells within a confined circular region 500 μm in diameter, which is randomly 
placed, will die. The cells don’t automatically die but wait a randomly chosen period between 6–15 hours before 
being removed from the system. This is an estimate for how long it takes to go through apoptosis68,69.

The probability of death for a single cell is once per week for the high death rate and once every two weeks 
for the low death rate. The actual death rate is variable because it depends on the number of cells at any time, but 
when the space is completely full (approximately 13,000 cells), around 2,000 cells are dying per day for the high 
death rate and 1,000 cells per day for the low death rate.

For the catastrophes, we need to ensure that the number of cells deaths on average is similar to the random 
death rate, because they happen at a population level at certain time points rather than to individuals. We define 
the probability of a catastrophic event pcat based on the probability of death pdeath and the time intervals Tcat 
between catastrophic events:

= .p
fp

N N
T

/cat
death

deaths
cat

Here f is the fraction of deaths that are catastrophic, Ndeaths is the number of cells that die from each catastrophic 
event, and N is the total number of cells. Setting the probability of a catastrophic event pcat to 1, we can solve for 
Tcat to get the appropriate time between catastrophes:

=T N N
fp

/
cat

deaths

death

However, because the catastrophic death region will be spaced randomly there is a possibility that a new 
catastrophe will overlap with an old one before filling back in or will lie on an edge, so in general, there won’t be 
the same number of cells that die each time a catastrophe occurs. This can be accounted for if the time between 
events is changed each time based on the number of deaths from the previous event. If the number died previ-
ously is less than what would be given by fpdeath, then the numerator gets smaller, making a smaller time interval 
between events, and if the number that died is larger, then the next time interval will be larger. By adjusting after 
each event, we can compensate for this variation.

Trait distribution heat maps. For each simulation we show how the 2D combination of traits of all cells are 
distributed at a specific time point. To create these graphs, we binned the values of intermitotic times and migra-
tion speeds for all cells into an 11 × 11 array and used the MATLAB function contour() to define the isolines. Using 
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Pixelmator, each region in the resulting image was converted into white with the value of transparency as a linear 
gradient of the isoline color so that zero density corresponded to 0% transparent white and maximum density 
corresponded to 100% transparent white. We overlaid this on our color map to show the densest regions with more 
of the background color showing through. The average trait values over time made up the top layer of this graph.

Code availability. Code and interactive website available at https://github.com/jillagal/deathToy/wiki/
The-impact-of-proliferation-migration-tradeoffs-on-phenotypic-evolution-in-cancer.
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