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Abstract In this work, we analyze a mathematical model we introduced previously
[29] for the in-host dynamics of multiple myeloma and the immune system. We fo-
cus on four main aspects: 1) obtaining and justifying parameter ranges and point
estimates; 2) determining which parameters the model is most sensitive to; 3) deter-
mining which of the sensitive parameters can be uniquely estimated given various
types of data; and 4) exploring the model and updated parameter estimates numer-
ically. Using multiple sensitivity analysis techniques, we found that the model is
generally most sensitive to parameters directly associated with M protein levels.
This analysis provides the foundation for a future application of the model: predic-
tion of optimal combination regimens in patients with multiple myeloma.

1 Introduction

Multiple myeloma (MM) is a cancer of plasma B cells. There are almost two dozen
treatments approved in the US and many others currently in clinical trials [42]. Reg-
imens usually combine multiple therapies simultaneously. Patients often receive ad-
ditional different combinations, after not responding to an initial combination, or
after responding and then relapsing. Many patients do not survive more than ten
years [42]. Without direct comparison studies, it is difficult to know the best combi-
nations and doses for treatment. Questions remain regarding both treatment choice
and timing [42].

In this work, we use a mathematical modeling approach to address some of these
challenges. A mathematical model that accurately captures important features of
the disease and therapy dynamics can be used to perform in silico experiments that
test different regimens. It can also be used to predict a regimen that is expected to
perform optimally. We start with a “within-host” mathematical model of MM (“tu-
mor”’) and immune system dynamics that was introduced in the work of Gallaher et
al. [29]. This model includes a measure of tumor burden in a hypothetical patient
with MM, along with several immune cell types that play important roles in disease
control or progression. These model components and key interactions between them
are included to reflect the biology and to represent targets for therapeutic interven-
tion.

Some of the earliest mathematical models for tumor-immune system interactions
include those of Stepanova [73] in 1980, Kuznetsov et al. [46] in 1994, Kirschner

Oncology Clinical Development, Bristol-Myers Squibb, Lawrence Township, NJ 08648, e-mail:
suresh.shelat@bms.com

Hearn Jay Cho
Tisch Cancer Institute, Mt. Sinai School of Medicine, New York, NY 10029, e-mail:
hearn.jay.cho@mssm.edu

Helen Moore
Bristol-Myers Squibb, Princeton, NJ 08543
Current address: AstraZeneca, Waltham, MA 02451, e-mail: dr.helen.moore @ gmail.com



Multiple myeloma model sensitivity analysis and simulations 3

and Panetta [44] in 1998, de Vladar and Gonzéilez [16] and Moore and Li [54] in
2004, and d’Onofrio [22] and de Pillis et al. [15] in 2005. These models are formu-
lated and analyzed as dynamical systems described by ordinary differential equa-
tions (ODEs) while other modeling approaches include structured population mod-
els [17], partial differential equations (PDEs) [49], cellular automata models [81], or
combinations of these approaches [12]. Many of these models consist of very gen-
eral descriptions of cancer dynamics, while some (e.g., the chronic myelogenous
leukemia model by Moore and Li [54]) analyze tumor-immune system interactions
for specific cancer types.

Our model tracks dynamics in the peripheral blood of patients with MM, al-
though these dynamics are driven by interactions that occur elsewhere (bone mar-
row or lymph nodes). Levels of myeloma protein (M protein) in peripheral blood
samples are strongly correlated with tumor burden [66]. Sullivan and Salmon [76]
developed a simple tumor growth mathematical model in the early 1970s using
M-protein levels to study chemotherapy-induced tumor regression in patients with
MM. Swan and Vincent applied optimal control in 1977 [78] to predict an optimal
chemotherapy dosing strategy for patients with MM. In 1977, Hokanson et al. [37]
fit individual M-protein data with mathematical models that considered myeloma
cell populations that were sensitive or resistant.

In 2015, Jonsson et al. [40] published a model of patient M-protein levels in
response to treatment with carfilzomib (CFZ). Terms that captured the concentra-
tions of CFZ over time were included, and were fit to individual patient data using
nonlinear mixed effects modeling. A model for survival was also included, and co-
variates for each model were tested and found to be significant for patient survival
prediction.

Tang et al. [79] published a model in 2016 for patient M-protein levels in clini-
cal trials testing bortezomib-based chemotherapy. Although data from hundreds of
patients were available and some patients had less data available than others, the
model was fit to each individual separately, and parameter estimates were averaged.
The model validation was performed on aggregated quartiles of M-protein levels.
Their mathematical model proposed a differentiation hierarchy in the bone marrow
with a myeloma progenitor cell population that might cause relapse. They predicted
that rational combination treatments with decreased selection pressure on myeloma
cells could lead to a longer remission period.

In 2017, Nanavati et al. [55] published a semi-mechanistic protein production
and signaling model with seven main compartments. Additional compartments were
used to represent the concentration of the treatment vorinostat and as “transit” com-
partments to introduce delays into the model. The model was fit to aggregate in vivo
xenograft data (digitized from the literature) for mice treated with vorinostat.

These prior studies have not examined the role of the immune system in MM
disease dynamics. Several immunomodulatory drugs have been approved for use in
MM, and more are currently in clinical trials [42]. As we plan to eventually optimize
regimens for patients with MM and include immunotherapies, our model includes
key tumor-immune interactions in patients with MM.
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Our mathematical model consists of a dynamical system that tracks a tumor bur-
den marker and several immune cell components. We track the level of M protein
in the peripheral blood, which we consider to be a surrogate of tumor burden in
patients with MM [24]. The immune cells included in our model are cytotoxic T
lymphocytes, natural killer cells, and regulatory T cells.

In this paper, we carefully justify ranges and values of parameters in the model
from the literature. Based on these ranges, we perform global sensitivity analyses
to determine the parameters of the model with the largest effect on the outcomes.
We look for improved estimates of these sensitive parameters by fixing the other
parameters, and fitting the model to aggregate data in the literature. With these up-
dated parameter estimates, we determine identifiability of the sensitive parameters
assuming the availability of additional data. Finally, we explore the full model with
numerical simulations.

By determining sensitive parameters in the model, we have the potential to re-
duce the complexity of the model. We can fix the insensitive parameters to estimated
values, and only allow the sensitive parameters to vary between hypothetical sub-
jects. This simpler model can be used in the future to predict optimal combination
regimens in silico. These predictions can then be tested either preclinically or clini-
cally and compared to regimens with known outcomes to evaluate and calibrate the
results.

2 The Mathematical Model

Our mathematical model, originally presented in [29], consists of a system of or-
dinary differential equations which represent interactions between myeloma cells
and the immune system. We include the following four populations in the periph-
eral blood: M protein produced by MM cells, M(¢); natural killer (NK) cells, N(z);
cytotoxic T lymphocytes (CTLs), T¢(¢); and regulatory T cells (Tregs), Tg(¢). A de-
tailed description and justification of the model interactions is given in [29]. The
interactions between the populations are represented in Fig. 1 and summarized in
Table 1.

The model equations (1) — (4) are given below, with the labels a — k above the
corresponding interactions described in Table 1.
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Figure 1 Diagram of population interactions. M represents M protein produced by MM cells,
Tc represents CTLs, N represents NK cells, and 7k represents Tregs. The solid curves represent
an increase (arrows pointing in) or decrease (arrows only pointing out) in population sizes. The
dashed curves represent interactions that either boost (arrows) or inhibit (solid circles) population
sizes or rates of change. These interactions (labeled a - k) are summarized in Table 1.

Label | Interaction References
a |Tc crosstalk with N; boosts N proliferation [6], [48], [52], [67], [68], [70]
b [N crosstalk with T¢; boosts T¢ proliferation [6], [58], [67]
¢ |T¢ increases activation/efficacy of N cells [48], [52], [68]
d |Antigens shed from M stimulate T¢ proliferation |[1], [18], [23], [39], [63], [84]
e |N cells kill myeloma cells [8], [9], [19], [28], [41], [62]
f |Tc cells kill myeloma cells [19], [41], [84]
g |Myeloma cells decrease efficacy of N cells [30]
h |[Myeloma cells decrease efficacy of 7¢ cells [71, [13], [26], [64], [75]
i |Myeloma cells help T cells proliferate [13], [25], [27], [26]
Jj |7 decreases efficacy of N cells [31], [32], [43], [71], [77], [80]
k |7 decreases efficacy of T¢ cells [10], [21], [43], [51], [69], [80]

Table 1 Description of interactions between populations in the model.
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In the absence of the others, each population is assumed to grow logistically
(with growth rates denoted by 7;), and decay exponentially (with death rates defined
by 5,)

Equation (1) describes the dynamics of the myeloma cell population, represented
by the concentration of M protein in the blood. The population growth includes
a constant source term, representing production of protein of similar weight from
sources other than myeloma cells [20].

The nonlinear term multiplying the death rate constant Jy; describes how this
death rate can be increased or decreased, depending on the cell-cell interactions. In
particular, the first part of the nonlinear term indicates that NK cells (V) and CTLs
(Tt) kill myeloma cells (e and f respectively), and that the crosstalk between NK
cells and CTLs (c) further increases the efficacy of NK killing of myeloma cells.

However, M protein (M) and Tregs (Tg) decrease the efficacy of NK and CTL
killing of myeloma (g, h, j, and k). We use saturating functional forms for feedback
(rather than mass action) so that there is a limit to the size of each possible effect.

Equation (2) describes the dynamics of the CTL population. The growth (pro-
liferation) of CTLs is increased by the presence of MM and NKs (b and d, respec-
tively). Finally, the equations (3) and (4) describe the dynamics of NKs and Tregs,
respectively. NK cell proliferation is increased by crosstalk with CTLs (a), and Treg
proliferation is increased through activation by MM cells (i).
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3 Parameter Values and Ranges

In this section, we summarize literature information related to parameters in our
model, and explain our decisions for parameter values and ranges that we used.

Growth and decay parameters for M protein, M

Normal plasma cells produce immunoglobulin (Ig), which has multiple types. A pa-
tient with MM typically overproduces one immunoglobulin type, with the majority
of patients overproducing IgG and most other patients overproducing IgA [47]. We
used values associated with IgG whenever a choice must be made for patients with
MM [35, 79].

Constant source term, s, In healthy adults, a typical level of IgG in the pe-
ripheral blood is approximately 1 g/dL [34, 60, 74, 82]. In the absence of myeloma
(ryy = 0 in healthy cases), we reduced Equation (1) to dM/dt = sy — SyM. Using
8y = 0.001/day (the low end of the range determined in the &y, section below) and
a steady-state value of My, = 1g/dL yields sy, = 0.001 g/dL-day. The sy, term is
the only term in our model that is not related to multiple myeloma. Additionally,
the model is only sensitive to it when levels of M are close to 1 g/dL (from global
sensitivity analysis not shown). Thus we fixed sy to a value of 0.001 g/dL-day, as
we restricted our model to patients with multiple myeloma.

Growth rate constant, r);: The mathematical model of Jonsson et al. [40] of
M protein levels for multiple myeloma patients lists an M-protein growth rate
constant of 0.0283/week ~ 0.004/day, which corresponds to a doubling time of
In(2)/0.004 ~ 173 days.

In Nardiello et al. [56], a plasma cell proliferation index (PCPI) assay was used
to determine the fraction of cells undergoing proliferation in multiple myeloma cell
samples from the bone marrow of patients. Due to the design of the PCPI assay,
which measures the proliferation marker Ki-67 in cells, the resulting values are
over-estimates. The lowest value in that work was 6.9%, which was for the group
of newly-diagnosed patients. Kumar et al. [45] used BrdU to assess proliferation of
myeloma cells from patients (as a percentage of cells entering S phase during the
incubation time). The labeled cells had median values of 0.4% and 1.2% in sam-
ples from peripheral blood and bone marrow, respectively. Considering the results
of both the PCPI and BrdU assays, we used a value of 3.5% of cells initiating pro-
liferation over two days, giving a rate constant of 0.0175/day.

We also considered growth rate values from several mathematical models of tu-
mor and immune cell interactions that are not specific to multiple myeloma. Arciero
et al. [2] used a growth rate value of » = 0.18/day to represent growth of an aggres-
sive tumor (doubling time of 3.85 days). De Pillis et al. [15] used a tumor growth
rate of 0.51/day based on mouse data from [19]. Thus, we used a parameter range
of 0.004-0.5/day for ry.
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Decay rate constant, §,,: Hansen et al. [36] estimated the half-life of M protein
to be 11.9 days (6 = 0.058/day). Mills et al. [53] cited the following half-life
values for M protein: 21-25 days for IgG subtype and 7-14 days for IgA subtype
(rates of 0.028-0.099/day). However, both of these studies were of patients who had
received treatment that should contribute to the loss rate of M protein, so the cited
half-lives are not due to 8, alone. Moreover, in our equation for M, we also have
several immune interactions contributing to loss of M, which we expect would be
reflected in the half-lives cited above. Thus &y, would be lower than if it were the
only contribution to the half-lives cited above. If we assume Equation (1) is in steady
state, and if we use values shown in Table 2 for parameters other than &y, then we
get a value between 0.001 and 0.002 for &y;. We chose a range of 0.001-0.1/day for
Oy, and a value of 0.002.

Carrying capacity, Kj;: Among 10,750 patients characterized in Greipp et al.
[35], the median M-protein level was 3.9 g/dL. A similar range was also observed
in Tang et al. [79] prior to treatment. Anecdotally, there are reports of values higher
than 10 g/dL. We chose a range of 7-15 g/dL for the carrying capacity.

Growth and decay parameters for CTLs, T¢

Growth rate constant, r¢: De Boer et al. [5] fit a differential equation model to data
to characterize immune response during viral infection (lymphocytic choriomenin-
gitis). They found that CD8+ cells have a biphasic response: an initial expansion
phase with doubling time of 8 hours followed by a contraction phase with a half-life
of 41 hours. The initial doubling time translates to a growth rate of r¢ ~ 2.31/days.
We used this fast rate (stimulated response) as an upper bound for r¢. A mathemat-
ical model of tumor and immune response by Arciero et al. [2] used a sigmoidal
dependence for effector cell proliferation (dependent on TGF-f both for immune
suppression and stimulation) with a maximum proliferation rate of 0.1245/days. De
Pillis et al. [14] estimated that the rate of CD8+ T cell activation induced by IL-2 is
1.11/day in a model of immune response for renal cell carcinoma. A mathematical
model by de Boer et al. of T-lymphocyte anti-tumor response used a doubling time
of 16 hours (rate of 1.04/day) for activated T cells [4]. We chose a parameter range
of 0.01-0.5/day, which is slightly lower than the higher values cited, as r¢ reflects
the regular proliferation rate for CTL, with additional activation by myeloma and
NK cells controlled by the parameters ayc, byc, anc, and byc.

Carrying capacity, Kc: Using data presented in Pessoa et al. [59], we estimated
that CTL populations can reach levels as high as 1500 cells/uL in MM patients,
particularly in patients with long-term disease control. Thus, we chose 600-1500
cells/uL for the range of values considered for the carrying capacity K.

Decay rate constant, 5¢: Using a half-life value of 41 hours during a contraction
phase of a viral infection as in De Boer et al. [5], the decay rate would be 0.405/day.
Sontag [72] used a decay rate of 0.1/day. However, slower rates have also been used.
Arciero et al. [2] gave a decay rate of 0.03/day for effector cells. De Boer et al. [4]
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gave a turnover time for T lymphocyte of 50 days (rate of 0.014.day). De Pillis et
al. [14] cited that for healthy donors, CD8+ cells have a half-life of 77 days which
translates to a rate of 0.009/day (parameter m in their work). We thus considered a
range of 0.01-0.5/day for d¢.

Growth and decay parameters for NK cells, N

Constant source term, sy: The source term sy is included in our model because
we expect the innate immune system to have non-negligible production of NK cells
with efficacy against myeloma cells. de Pillis et al [15] used a constant source
term of 1.3 x 10* cells/day for NK population dynamics. Dividing by a typical to-
tal blood volume of 5L for an adult, this results in 0.0026 cells/uL/day. Zhang et
al. [85] gave a production rate of ~ 14 x 10° cells/L/day for healthy subjects and
~ 7 % 10° cells/L/day (7 — 14 cells/uL/day). We chose a parameter range of 0.001-5
cells/uL/day.

Growth rate constant, ry: An in vivo study of NK cells from healthy subjects
found a doubling time of 16 days in healthy young adults (rate of 0.04/day), but a
slower rate of 0.02/day (doubling time of 28 days) in healthy elderly subjects [85].
de Pillis et al. used a maximal rate of 0.5/day for NK cell recruitment by tumor
cells [15], and another of their models gave a value of 0.0668/day for the maximum
rate of NK cell proliferation induced by IL-2 [14]. We chose a parameter range of
0.01-0.5/day for ry.

Carrying capacity, Ky: Based on the higher range of observed values of ~ 600
cells/uLL among MM patients [59], we chose a range of 300-650 cells/uL for the
carrying capacity Ky.

Decay rate constant, Sy: The in vivo studies of Zhang et al. [85] gave half-lives
of 10 or 11 days (mean for healthy elderly and healthy young adults, respectively)
which translates to a decay rate constant of 0.06-0.07/day. The model in [14] used a
turnover rate of 0.0125/day for NK cells, and the model in [15] used a turnover rate
of 0.0412/day. We chose a parameter range of 0.01-0.5/day.

Growth and decay parameters for Tregs, Tg

Growth rate constant, rz: Vukmanovic-Stejic et al. [83] assayed human samples
and found that Tregs have a typical proliferation rate of 0.0831 cells/uL * day. Sim-
ilar to ranges we used for growth/decay rates for other immune cells, we considered
arange of 0.01-0.5/day for rg.

Carrying capacity, Kz: The high range of Tregs seen in [59] is ~ 100 cells/uL.
We then use a range of 60 — 120 cells/uL for K.

Decay rate constant, §g: Vukmanovic-Stejic et al. [83] also studied the turnover
rates of Tregs. They found a turnover or loss rate constant of 0.0658/day. A math-
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ematical model of tumor-immune interaction [65] used a decay rate of 0.1/day for
the Tregs population. We thus considered a range of 0.01-0.5/day

Hill function parameters for feedback terms

We allowed most of the g;; to vary from 0-10, i.e., from no change to more than an
order of magnitude increase in respective death and growth rates, depending on their
function. We considered a slightly wider range for ayu, acyr and acyyy, reflecting a
high killing efficacy by immune cells. We restricted apymns + ary < 1 to ensure the
correct sign for the loss rate for M. We allowed the threshold values, b;;, to vary
between 0 to 2 times the respective carrying capacity. For point estimates of the b;;,
we chose values below half the respective carrying capacity.
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Parameter Table

Index |Name | Description Range Considered References Used | Bistable
- sy |Constant source for M 0.001 g/dL-day [34, 36, 53, 60, 74, 82]| 0.001 0.001
1 ry | Proliferation rate constant for M 0.004-0.5/day [2, 15, 40] 0.0175 0.025
2 Ky |Carrying capacity for M 7-15 g/dL [59] 10 13
3 Sy |Basal death/decay rate constant for M 0.001-0.1/day [36, 53] 0.002 0.007
4 ayy |Maximum fold-increase in death rate of M by N 0-20 Estimated 5 5
5 | bym |Threshold for increase in death rate of M by N 0-650 Estimated 150 275
6 acy |Maximum fold-increase in death rate of M by T¢ 0-20 Estimated 5 5
7 bey | Threshold for increase in death rate of M by T 0-1500 Estimated 375 500
8 | acym |Maximum fold-increase in N efficacy from T¢ 0-20 Estimated 8 10
9 | ayy |[Maximum extent M decreases Tr and N efficacy aym +ary <1 Estimated 0.5 0.35
10 | bum |Threshold for M decreasing Tc and N efficacy 0-15 Estimated 3 1.56
11 | agm |Maximum extent T; decreases 7T¢ and N efficacy aym +agry <1 Estimated 0.5 0.64
12 | bgry |Threshold for T decreasing ¢ and N efficacy 0-120 Estimated 25 10
13 rc | Proliferation/activation rate constant for T¢ 0.01-0.5/day [2,4,5, 14] 0.013 0.45
14 | K¢ |Carrying capacity for T 600-1500 cells/uL  |[59] 800 1000
15 8¢ |Death/inactivation rate constant for T¢ 0.01-0.5/day [2,4,5,14,72] 0.02 0.35
16 | amc |Maximum fold-increase in activation rate of 7¢ by M |0-10 Estimated 5 1
17 | byc |Threshold for increase in activation rate of 7o by M |0-15 Estimated 3 6.5
18 | ayc |Maximum fold-increase in activation rate of 7o by N |0-10 Estimated 1 1
19 | byc |Threshold for increase in activation rate of 7o by N [0-650 Estimated 150 275
20 sy |Constant source rate for N 0.001-5 cells/uL-day [[15, 85] 0.03 1.49
21 ry |Proliferation rate constant for N 0.01-0.5/day [14, 15, 85] 0.04 0.02
22 | Ky |Carrying capacity for N 300-650 cells/uL [59] 450 550
23 | Oy |Basal death/inactivation rate constant for N 0.01-0.5/day [14, 15, 85] 0.025 0.025
24 | acy |Maximum fold-increase in activation rate of N by 7¢ [0-10 Estimated 1 1
25 | bey |Threshold for increase in activation rate of N by 7 |0-1500 Estimated 375 375
26 rg  |Proliferation/activation rate constant for Ty 0.01-0.5 cells/uL-day|[83] 0.0831 0.1
27 | Kgr |Carrying capacity for T 60-120 cells/uL [59] 80 100
28 S8r |Basal death/inactivation rate constant for T 0.01-0.5/day [65, 83] 0.0757 0.077
29 | ayr |Maximum fold-increase in activation rate of 7x by M |0-10 Estimated 2 1
30 | byg |Threshold for increase in activation rate of 7z by M |0-15 Estimated 3 3.25
31 M [Observed values of M protein in diseased state 0.5-10 g/dL 35, 47,79] 4 1.92 or 0.96
32 TC0 Observed values of CTL in diseased state 464 +416 cells/uL  |[59] 464 464
33 NO |Observed values of NK in diseased state 227+ 141 cells/ul.  |[59] 227 227
34 T,? Observed values of Ty in diseased state 42 426 cells/uL [59] 42 42

Table 2 Table of parameter descriptions and ranges of values used in the model. All parameters
are assumed non-negative. M°, TCO,NO , T,? are used as initial values/conditions.

4 Numerical Simulations

In this section, we use numerical simulation to explore the behavior of our model
system. In Section 4.1, we focus on steady-state behavior, and provide plots of ex-
ample trajectories for the solutions to Equations (1)-(4). For collections of sampled
parameter sets, we show a distribution of the populations’ steady-state values, and
a distribution of times needed for M to reach steady state. In Section 4.2, we illus-
trate an example of model bistability. That is, for a given set of model parameters,
we show how small perturbations in initial M-protein levels can lead to either high




12 Gallaher et al.

M-protein level, or low M-protein level. Finally, in Section 4.3, we examine dif-
ferences between high and low M-protein states. For the parameter sets sampled
previously, we plot the distribution of each population size, separated by high and
low M-protein states. We also plot the distributions of sizes of each net killing effect
defined by the labeled terms in Equation (1), separated by high and low M-protein
states.

4.1 Steady-state results

Simulation results using the specific parameter values listed in the Used column of
Table 2 are shown in Fig. 2. We also plotted the histogram of steady-state values of
the model variables when we simulated 10,000 sets of parameter values chosen from
the range listed in in Table 2. The distribution of steady-state values is consistent
with observations in the literature [35, 79, 59].

3600 2000
\;‘ 5 6000 I (B)
= 500 (A) = mean =2.12 1000 mean =609
8 43 3000
=400 2
© 300 3c O s 0 % 500 1000 1500
"""""""""""""""""""""""""""" 2 M protein (g/dL) CTL (cells/ul)
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GC) TC N TR*M S L
g 100 ! = 1000 meen =256 2500 mean =31.4
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Figure 2 Baseline simulation results using parameter values listed in Table 2. (A): Dynamics of
model variables using parameter values and initial conditions listed on the Used column in Table
2. (B): Histograms of steady-state values of model variables obtained from simulating the model
for 0 <t < 1000 days using 10,000 sets of parameter values sampled from the range listed on
the Range Considered column in Table 2 (parameter sampling was done using Latin Hypercube
sampling, see Sensitivity Analysis section further on).

Figure 3 shows a histogram of the times to steady state (log scale), normalized so
that the total area is equal to 1. Out of all 10* samples, 77.7% reached steady state
within one year, 53.8% reached steady state within 6 months, 23.7% reached steady
state within 3 months, and less than 0.1% reached steady state within one month.
On a log scale, the distribution is unimodal with median 146 days and mean 165
days.
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Figure 3 Histogram of times to steady state for 10* simulations. Time is measured in days and is
presented on a log scale.

4.2 Numerical bistability

To illustrate other types of qualitative behavior that our model exhibits, aside from
the baseline simulations displayed in Figure 2, we show an example of model bista-
bility. Similar bistable results were identified for a reduced version of the model (1)
through (4), where NKs and Tregs are held fixed [29]. Here we simulate the full
non-scaled model (1) through (4). Parameter values used in the simulation of the
model are recorded in Table 2.

Figure 4 illustrates the model’s bistable behavior. The left figure corresponds to
high tumor burden (achieved for a larger M initial condition), while the right figure
represents a state of disease control (achieved for a smaller M initial condition).
The scale to the left of each figure corresponds to immune cell concentrations (7,
N and Tg), while the scale to the right of each figure corresponds to M-protein
concentration (the solid black curves represent the M-protein concentration over
time). Here, we note that the steady-state value for M in the case of higher tumor
burden is 3.37 g/dL, and is 0.16 g/dL for disease control.

For each simulation, we initialize our model using immune cell counts that corre-
spond to a diseased state (Tx-(0) = 464,N(0) = 227,T(0) = 42) [59]. For a healthy
individual, M-protein is approximately < 1 g/dL [74].

In Figure 4 (left), we initialize the M-protein to a value of 1.92 g/dL. In this
case, we note an immune response, where both NK and CTL populations increase
(although, NK cells increase only marginally). However, this immune response is
not enough to lower the tumor burden. Here, the steady-state value for M-protein
is high (3.37 g/L), and the steady-state values for the immune cell populations are
567.40, 231.17, and 48.98 cells/uL for CTLs, NKs, and Tregs, respectively.

In Figure 4 (right), we initialize an M-protein level of 0.96 g/dL. Here we note
an initial immune response, where CTL populations increase slightly. The NK cell
population remains near constant, and Treg population decreases. As the M-protein
levels progressively decrease to a state of disease control (steady-state value of M-
protein 0.16 g/L), the immune response is suppressed (described by a drop in CTL
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population). The steady-state values for the immune cell populations are 472.40,
225.06, and 26.46 cells/uL for CTLs, NKs, and Tregs, respectively.
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Figure 4 Initial condition for MM is varied. Initial conditions, corresponding to a diseased state
[591], are held fixed are Tc(0) = 464,N(0) = 227, Tz (0) = 42. Scale to left corresponds to immune
cells Te, N, and Ty , and scale to the right corresponds to M-protein concentration (illustrated by
solid black line). Left: M(0) = 1.96. Final M-protein level is 3.37 (Ky = 13). Right: M(0) = 0.96.
Final M- protein level is 0.16. Other parameter values are: ry; = 0.025, 8 = 0.007, s, = 0.001,
re = 0.45, §¢ = 0.35, ry = 0.02, &y = 0.025, sy = 1.49, rg = 0.1, g = 0.077. byy = 0.5 x Ky,
bCM =0.5 *Kc, bMM = O.IZ*KM, bRM =0.1 *KR, bMC =0.5 *KM, bNC =0.5 *KN, bCN =0.375%
Ke, byr =0.25%x Ky, ayy =5, acyy =5, acvm = 10, ayyy = 0.35, agyy = 0.64, apye = 1, aye = 1,
acny = 1, ayr = 1. The carrying capacities are: Ky = 13, K¢ = 1000, Ky = 550, and Kg = 100.

4.3 Distinctions between high and low M protein cases

Next, we wished to sort the different immune populations outcomes produced by
the model as parameter values were simultaneously varied (using 10,000 sets of pa-
rameters). Specifically, we classified the model outcomes into two categories based
on long-term M protein levels: 1) low M protein levels (i.e., M < 3 g/dL), 2) high M
protein levels (i.e., M > 3 g/dL). Our motivation for this was that data from Pessoa
et al [59] showed that long term disease control patients with multiple myeloma had
a particular immune signature corresponding to high average CTL counts and slight
variations in average NK and Treg cell counts as compared to fully symptomatic
MM patients. In other words, here we sought to analyze the pathway by which our
model could produce either high or low M proteins and compare it with the data.

In Figure 5-(A), we showed box plots of steady state values. Simulations from
10,000 sampled parameter values showed that differences between low and high M
can be distinguished by higher v.s. lower NK population respectively, and lower v.s.
higher Treg population respectively. However, CTL population size remained rela-
tively similar. This is contrast to data shown in [59] which showed a much higher
CDS8+ immune population for patients with long-term diseased control (however,
when all effector T cells, CD4+ and and CD8+, were combined, the differences
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Figure 5 Comparison between long term Low M protein and High M protein. (A): Box plots
of steady-state values. (B): Box plots of size of myeloma killing terms as used in (1): NK
Killing: (aNM N)/(bNM +N), CTL Killing: (acM TC)/(bCM + Tc), NK+CTL Killing: (aCNM . TC .
N)/((bnm +N) - (bem + Te), Basal kill rate 6, Kill Reduction by M: (ayy M) / (bym + M), Kill
Reduction by Treg: (agm Tg)/(bry + Tr)- Steady state values of variables were used to compute
killing terms. Model simulation was performed for 0 < ¢ < 1200 days using 50,000 sets of param-
eter values sampled from the range listed on the Range Considered column in Table 2 (parameter
sampling was done using Latin Hypercube sampling, see Sensitivity Analysis section further on).
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between patients with long term control and those with poor outcome were not as
prominent). However, the steady-state values in our model may not fully reflect the
true efficiency of immune cells in keeping the myeloma population in-check (since
all parameter values were changed during sampling, including a;; and b;; values re-
flecting feedback). Hence, we next computed the size of the killing efficiency terms
as defined in (1) as shown in Fig. 5-(B). Here, we saw that killing efficiencies by both
NK and CTL were higher, on average, for the Low M-protein case indicating that
both immune populations contributed in killing myeloma cells in agreement with
the results shown in [59]. Interestingly, we saw a slightly higher CTL steady-state
values for the Low M-protein case when we also performed simulations where we
fixed the feedback killing efficiency parameters (all a;; and b;; were set to the values
in the Used column in Table 2 instead of sampled from a range; figure not shown).
In conclusion, results from our model suggest that while CTL contributed slightly
in lowering M-protein level, the primary mechanisms for controlling myeloma level
were due to an increase in NK and a decrease in Treg populations.

5 Sensitivity Analysis

Due to the high levels of uncertainty and variability in the model parameter values,
we performed sensitivity analysis to determine if some of the parameters are more
important than others in determining the outcome of the system. We used the M-
protein level M as the outcome of interest, as M protein continues to be an important
measure of tumor burden in patients with MM [20, 24].

We used two sensitivity methods that give different information, as in Olufsen
and Ottesen [57] and Marino et al. [S0]. Both methods are global, which means that
we varied all parameters simultaneously, without fixing any. We varied the parame-
ters by sampling from the parameter space using Latin hypercube sampling (LHS),
assuming uniform distributions on each specified parameter range of values. We
used global methods because we do not assume any of the parameters have values
that are a priori well-estimated or take on fixed values. Identifying sensitive param-
eters allowed us to subsequently freeze the values of other parameters, and focus on
the identifiability and estimation of sensitive parameters.

5.1 Sensitivity Index

For the first method, we computed the sensitivity index which measures the change
in the steady-state M value when each parameter is perturbed slightly slightly.
Specifically, as in Olufsen and Ottesen [57] and Ingalls [38], we first constructed
a sensitivity matrix with (7, j)-th entry corresponding to
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where parameter p; is indexed as in Table 2 (j = 1,2,...,35) and time #; is the dis-
crete time point at which M protein is measured (i = 1,2, ..., K). We can also express
the sensitivity matrix S in the following matrix form,

roM oM oM , 1
Tpl(tl) sz(ﬁ) Tpn(ﬁ)
oM oM oM
— () =— () ... =— (¢
5= M _ |55, 55,00 - 5, @) ©
dp : : :
oM , oM . aM([ )
_8p1 K 8p2 Ko 8pn K -

Since different parameters can have different units (and thus can have orders of
magnitude difference in size) when compared to M and to each other, we considered
the relative sensitivity S by comparing the size of a relative perturbation in parameter
p to the resulting relative change in M [38, 57], i.e.,

oM p

S=5,

)

Due to the model complexity, we approximated the partial derivatives %—’Z using a

finite difference approximation as in [61, 57],

oM M(ti;pj+€)—M(ti;p))

apj (ti) ~ € 3

where € ~ @(v/10710) and 1071 is the tolerance (size of the absolute error) of the
numerical solution of the differential equation. Thus, the sensitivity matrix has an
error of €(1073) [61, 57].

The sensitivity of each parameter p; is then measured by the sensitivity index,
defined as the magnitude of the corresponding j-th column of S,

- ~ K (oM pi ?
Si=1ISill2= Z ('(ti)M(]ti)> : ®)

The values of S; can be ordered from largest to smallest, indicating most to least
sensitive parameters.

We also considered the subset selection approach presented in [61, 57] when
categorizing parameters as sensitive or insensitive. The rank p of the relative sen-
sitivity matrix § is computed by finding the number of singular values of S that
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are larger than 10~> (since the the sensitivity matrix has an error of ¢(1073)). The
rank p defines the number of sensitive parameters. The subset of parameters con-
sidered sensitive can be found by considering the following matrix decompositions.
Given the singular value decomposition (SVD) of the relative sensitivity matrix,
S§=UZVT, we partition V into two blocks, V = [V, V3s_,], where V,, contains the
first p columns of V. Then we perform a QR decomposition of V. That is, we find
a permutation matrix P so that VPTP = OR, where Q is an orthogonal matrix and R
is an upper triangular matrix whose diagonal elements are arranged in order of de-
creasing magnitude [33]. The permutation matrix P can then be used to determine
the ordering of parameter sensitivity, 6 = P76, where 6 = [1,2,...,35]" and the first
p entries of 6 determines the group of parameters that are considered sensitive.

We performed the local sensitivity analysis outlined above for 10,000 different
parameter sets, sampled from the range listed in Table 2 using LHS. For a given
parameter set, the relative sensitivity matrix S is computed by simulating the ODE
system for 1200 days (with approximate solutions evaluated at #; = 0,30, 60, ..., 1200
days). We examined both the dependence of long-term/steady-state levels of M pro-
tein on the different parameters, and the transition to steady state. For each parame-
ter set, we recorded the sensitivity index of each parameter (Equation (8)) and also
kept track of which parameters were identified as sensitive by SVD/QR decomposi-
tion.

5.2 Sensitivity of Steady-State Value of M

To examine the sensitivity of the steady-state value of M to changes in each param-
eter, we recorded the sensitivity index for each parameter (see (8) evaluated for for
t; > 600 days). Results from 10,000 different parameter sets are shown in Table 3
where the average value of the sensitivity index in Equation (8) for each parameter
is listed. The distribution of sensitivity index $; values over the 10,000 parameter
sets is shown by parameter in the box plot in Figure 6.

5.3 Sensitivity of Transient Dynamics

We also examined how parameter values may change the time course from initial
to steady-state conditions by analyzing the relative sensitivity matrix S evaluated
over the full time-course, from 0 to 1200 days. The sensitivity index ordering of pa-
rameters listed in Table 3 was preserved. However, subset selection using SVD/QR
decompositions gave slightly different results. In Fig. 7, we show the fraction of
times (among 10,000 parameter sets) that a particular parameter is characterized
as sensitive. The initial value of M, My, was characterized as sensitive for all pa-
rameter sets. Parameters that govern the dynamics of M in the absence of immune
cells, namely 8y, Ky, rar, were characterized as next-most sensitive. The top panel
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Parameter|E|[S;]||Parameter |E[S}]

5M 11.7 aAcNm 1.48

v 9.26 ||sy 1.09

m 9.24 AaARrRM 0.861

6C 8.00 aymc 0.775

N 7.32 ||6r 0.623

rc 7.23 ||rr 0.618

Kc 4.53 ||byce 0.458

aNm 4.49 bRM 0.333

Ky 3.99 ||Kg 0.332

acm 3.70 amm 0.321

acnN 3.41 bMM 0.176

anc 3.11 aMRr 8.87 x 10—2
bNM 3.08 bMR 6.72 x 102
bey 2.38 (|M° 9.68 x 10—3
ben 2.34 |12 9.39 x 10-3
bnc 2.06 ||N© 5.52x 103
Ky 1.74 || T 8.66 x 10—4

Table 3 Ordering of parameters from most to least sensitive with respect to steady-state M-protein
level, based on average values of the sensitivity index in Equation (8). Results were obtained by
averaging over 10,000 sets of parameter values chosen from the range listed in Table 2 using Latin
hypercube sampling (LHS).

105 L
10°f;

105

Sensitivity Index

10-10 L

5 10 15 20 25 30
Parameter Number

Figure 6 Box plot of sensitivity index value S; for each parameter j = 1,2,...,35 (in the order
listed in Table 2) for 10,000 parameter sets.

of Fig. 8 shows the fraction of times that the relative sensitivity matrix S has a par-
ticular rank; in most trials (87% of 10,000 parameter sets), S has rank between three
and eight, indicating that at most eight parameters are considered sensitive. The
bottom panel of Fig. 8 shows the distribution of singular values.
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Figure 7 Fraction of times a particular parameter was characterized as sensitive by the SVD/QR
subset selection method. Only parameters that were characterized as sensitive at least 10% of times
(from 10,000 parameter sets) are shown.
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Figure 8 Results from the subset selection approach using SVD/QR decomposition. (A): Box plot
of singular values of S (blue dashed line shows the threshold value of 10~* for computing the
matrix rank), (B): Histogram of Rank(S) (blue dashed line shows the threshold for 5% of all trials).
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5.4 Sensitivity from PRCC

The second sensitivity method we used was partial rank correlation coefficients
(PRCC), as discussed in [50]. We used LHS to uniformly sample the parameter
space and then uses PRCC to determine the monotonicity of the relationships be-
tween the parameters and the system output. A PRCC value of 1 indicates a strictly
increasing relationship, while a PRCC value of -1 indicates a strictly decreasing
relationship.

We sampled 10,000 parameter sets from the ranges in Table 2 using LHS. For
each parameter set, we computed the steady-state solution by simulating the system

of Equations (1)-(4) until the solution y = (M, T¢, N, Ty) satisfied W <

10~8. We evaluated sensitivities using PRCC on the same 10,000 sets of parameter
values, computed in Matlab.

Sensitivity coefficients and the corresponding p-values for each parameter are
listed in Table 4 and displayed graphically in Figure 9. The sensitivity analysis
shows that there are 24 parameters that have a statistically significant PRCC value,
assuming a p-value cutoff of 0.01. There are 10 parameters that have statistically
insignificant PRCC values, including all four initial conditions.

The system is most sensitive to the basal death and replication rates of M (8y
and ryy, respectively). The system is also highly sensitive to the replication and
death rates of cytotoxic T cells and NK cells (r¢, 8¢, ry, and 8y) and the effects of
NK and T cells on M. Scatter plots of the steady-state M values vs. the eight most
sensitive parameters are shown in Figure 10. The system appears to be insensitive
to the Treg dynamics and all four initial conditions.

Parameter|PRCC  |p-value Parameter| PRCC p-value

oM -0.77506 |0 ben 0.071022 |1.2607e-12
rm 0.50157 |0 arM 0.063225 |2.6573e-10
rc -0.43832 |0 Or -0.057886 |7.3297e-09
% -0.35586 |0 SN -0.05191 |2.1566e-07
anm -0.35159 |0 bru -0.048376 |1.3529¢-06
acm -0.33998 |0 ayc -0.047831 |1.7762e-06
Oy 0.32594 |0 TR 0.033966 |0.00069492
¢ 0.32128 |0 bym -0.019666 |0.049612
bnm 0.28765 |0 Kr 0.01798 |0.072653
bem 0.2628 |0 NO -0.014379 |0.15117
anc -0.19504 |0 MO 0.01266 |0.20631
acNm -0.17783 |0 amm 0.010565 |0.29157
acy -0.17034 |0 byc 0.010241 |0.30664
Kc -0.11739 |0 byur 0.0091194|0.36264
bnc 0.086461|0 79 0.0053638(0.59235
Ky 0.08043 |0 amr 0.0038526|0.70056
Ky -0.07497 [6.6707¢e-14 TC0 -0.003647 |0.71582

Table 4 Table of PRCC values by parameter, in order of descending magnitude, and their corre-
sponding p-values (p-values smaller than 10~'* are rounded to 0). The response variable is the
steady-state value of M. Results were obtained using LHS/PRCC with 10,000 samples.
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Figure 9 Plot of PRCC and p-values for 34 parameters (sy, fixed), ranked from highest to lowest
PRCC.

Figure 10 Scatter plots of steady-state M values vs. the eight most sensitive parameters, with 1000
samples. Black curves indicate a loess fit to the data.

5.5 Comparisons between Sensitivity Index and PRCC Methods

We next compared the results obtained from the two methods of measuring param-
eter sensitivity as summarized in Tables 3-4. Looking at the 10 most sensitive pa-
rameters measured by each method (first ten listed on each Table), we observed that
there are eight parameters shared in common, namely &y, rar, v, v, Oc, e, anm, acum -
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From here on, we considered the effects of varying these eight parameters while
holding the rest fixed at the values listed on the Used Column in Table 2.

5.6 Sensitivity: Graphical Exploration

Here, we show numerical simulations that highlight how slight variations in sensi-
tive parameters can shift the model outcome between one of the two steady-states
illustrated in our bistability simulations (those shown in Figure 4).

As described above in Section 5, our sensitivity analysis measures sensitivity
by looking at how the M-protein level, M(z), varies according to small changes in
parameter values. Results of this analysis indicate that two of the most sensitive
parameters are the decay rate for M, 8y, and the proliferation rate for M, ry (see
Tables 3 and 4).

In Figures 11 and 12, we show the effect of varying &y, and ), on final M steady-
state values. The solid black curves correspond to the steady-state values illustrated
in Figure 4. In particular, each solid black curves to the left correspond to high
steady-state values of M (attained for initial condition M(0) = 1.92), and those to
the right correspond to low steady-state values of M (attained for initial condition
M(0) = 0.96). The dashed black curves indicate the change/switch in steady-state
behavior, due to a small variation in the indicated parameter. In each of Figures 11
and 12, we note that small variations in the indicated parameter results in a change
in the long-term dynamics of the M population.

T T T T
—0,,=0.007 —d,,=0.007
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Figure 11 Effect of varying dy on final M values. Here, the solid black curves correspond to the
M concentrations illustrated in Figure 4, while the dotted black curves correspond to the change
in M due to a change in the indicated parameter. (left): Switch from state of high tumor burden to
LTDC for increasing &y. (right): Switch from state of LTDC to a state of high tumor burden for
decreasing 8. All parameters are the same as those used in Figure 4.
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Figure 12 Effect of varying r), on final M values. Here, the solid black curves correspond to the
M concentrations illustrated in Figure 4, while the dotted black curves correspond to the change
in M due to a change in the indicated parameter. (left): Switch from state of high tumor burden to
LTDC for decreasing rys. (right): Switch from state of LTDC to a state of high tumor burden for
increasing rys. All parameters are the same as those used in Figure 4.

6 Identifiability

With a more clear view of the sensitive parameters for our model, we now examine
the structural non-identifiability of the model. The primary item of interest here
is whether it is possible to uniquely determine a set of sensitive parameters in the
ideal scenario of continuous error-free data for the four relevant model populations,
M,Tc,N,Tg. Model non-identifiability could be thought to arise when the model
is over-parametrized; a priori global identifiability is thus a structural property of
the model, and must be considered a prerequisite step for parameter estimation. The
question that one can ask in this context is this: given two sets of arbitrary parameter
values and assuming that the model is initialized at the same initial state, does there
exist at least an input function for which the model with the two parameter sets
yields different outputs?
There are three possible outcomes for the identifiability for a model:

e Globally or uniquely identifiable from data. In this case two distinct sets of pa-
rameter values can be distinguished from input-output data.

e Non-identifiable. In this case two distinct parameter sets yield the same output
no matter what input function is applied and no matter the initial conditions.

e Locally (or non-uniquely) identifiable. There are at most a finite number of in-
distinguishable parameter values.

There are multiple approaches for determining model identifiability. We performed
identifiability analysis of the model using the MATLAB package GenSSI ([11]),
which handles nonlinear systems of differential equations by applying a power se-
ries approach. Briefly, GenSSI uses Lie derivatives of the model system in order to
construct a system of equations; in turn the solvability properties of these equations
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are used to provide information about the global and local structural identifiability
as well as non-identifiability. A nice feature of the GenSSI approach is that besides
providing a text result that presents the solutions to algebraic relations, it also pro-
vides a graphical representation through the generation of identifiability tableaus
[11]. The identifiability tableaus are binary representations of the Jacobian of the
series coefficients with respect to the parameters with as many columns as param-
eters and with as many rows as non-zero series coefficients [3]. Values of one are
shown as black, and values of zero are shown as white. Since the number of series
coefficients may be infinite in principle, non-identifiability is not guaranteed for an
arbitrary model [3]. The rank of the Jacobian is used by GenSSI to establish solv-
ability properties. The structure of the tableaus is used to help decide how to solve
equations for a particular parameter. Specifically, the GenSSI Jacobian matrix rank
obtained by taking a predefined set of derivatives must match the number of un-
known model parameters in order for local identifiability to be guaranteed. For the
generated tableaus, columns consisting solely of zeros indicate that the respective
parameter cannot be identified and rows consisting solely of zeros provide no in-
formation and are deleted in successive tableau reducing steps. Tableau rows that
consist of two or more ones indicate that there are relations that must be solved al-
gebraically to provide identifiability. Solving these remaining algebraic relations is
where the algorithm spends most of the time.

6.1 Identifiability of the model, allowing the eight most-sensitive
parameters to vary

In this section, we study the model by setting all parameters to the Used column
values in Table 2, except for the top eight most-sensitive ones as obtained in the
previous section. These eight parameters are considered unknown in the model and
we explore whether they could be identified with error-free time series data. The
eight parameters allowed to vary here are ryy, Oy, rc, Oc, 7y, On,any, and acy. We
assume that we have information on all four populations in our model, meaning we
have error-free time series data on M, T¢, N, Tk, including the initial conditions (as
listed in Table 2).

The result from GenSSi for this case is that the eight most-sensitive parameters
for our model are globally structurally identifiable which indicates that error-free
time series data tracking the four relevant model populations are sufficient to iden-
tify a unique parameter set from the eight most-sensitive parameter list. The reduced
identifiability tableau is shown in Fig. 13.

If more parameters are added to the free parameter list (for example, carrying
capacity parameters, which rank high in sensitivity), then we get locally identifiable
results. This indicates that the top eight most-sensitive parameters in our model are a
priori identifiable. Next, we pursue practical (or a posteriori) identifiability. That is,
we test whether it is possible to evaluate parameters from a given set of experimental
data subject to experimental noise, explored in the next section.
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(a) (b)
The structurally glocally identifiable parameters are:

[rM deltaM rC deltaC rN deltaN aNM aCM] Identifiability tableau

First order reduced Identifiability tableau
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M deltaM C deltaC 1N deltaN aNM acM tM deltaM rC deltaC N deltaN aNM aCM

Figure 13 Model identifiability results with eight most-sensitive parameters allowed to vary. Black
blocks represent values of one; white blocks represent values of zero. (a) Results and reduced
tableau (b) Identifiability tableau. All eight parameters are globally identifiable.

6.2 Practical identifiability —- MCMC

The above structural identifiability results assume the availability of noiseless, com-
plete time-series data. In practice, such data are not available; thus it is worth explor-
ing whether the eight most-sensitive parameters are identifiable from, for example,
noisy steady-state data. If we assume that patients are at a steady state at the time
of diagnosis, we may use clinical data to try to infer parameter values. Pessoa et al.
[59] provide means and standard deviations for the three cell populations (T¢, N, Tg)
for patients with MM. The mean and standard deviation of M protein from patients
prior to treatment were obtained from [35, 79].

We make the additional assumption that the cell populations are log-normally
distributed, and seek to identify parameter distributions given the assumed param-
eter ranges (Table 2) and the distributions of the data. It should be noted that the
published data show large variances. In particular, the standard deviation of the T
population size is almost as large as the mean.

To estimate the parameter distributions, we used a Markov chain Monte Carlo
(MCMC) method. The Markov chain consisted of 100,000 samples obtained via
Metropolis-Hastings sampling. Prior distributions for the parameters were taken to
be uniform within the ranges in Table 2, with the growth and death rates (r; and
;, respectively) taken on a log scale. The resulting parameter distributions are pre-
sented in Figure 14 in the form of one-dimensional histograms and two-dimensional
heat maps.

We see that many of the parameters have broad distributions and thus are not
practically identifiable given the available steady-state data. This is not surprising
given the large amount of uncertainty in the data itself. However, it is clear from
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Figure 14 Matrix of two-dimensional heat maps showing the parameter distribution obtained via
MCMC, with one-dimensional histograms on the diagonal. In the heat maps, red indicates an area
of high density and blue indicates an area of low density. The axis limits are given by the parameter
ranges in Table 2. Axes for r and § parameters are on a log scale.

Figure 14 that log(r)s) and log(dy) have a strong linear relationship with slope ap-
proximately one. Thus, while the parameters themselves are not identifiable, a linear
combination of them is. Similar (but weaker) relationships are apparent between r¢
and O¢c and between ry and Sy .

Figure 15 shows the distributions for the four populations M, Tc, N, and Ty for the
MCMC chain. While the M distribution matches the assumed distribution well, the
immune cell populations do not match the data well. In particular, the 7¢ and N com-
partments tend toward their respective carrying capacities and cluster there, while
the Tz compartment size is tightly controlled. This may indicate that we are neglect-
ing the parameters responsible for controlling these cell populations. For example,
since the replication/death rates and carrying capacity of T are fixed, we would
expect its steady-state population size to have small variance. This is in agreement
with the Pessoa et al. [59] data, in which the Treg populations are similar among
healthy volunteers and patients with various stages of MM.
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Figure 15 Distributions of the four populations M, T¢, N, and Ty for the MCMC chain.

7 Conclusion

We have explored a mathematical model that was originally presented in [29]. This
model uses immune cell and M-protein populations in the peripheral blood to rep-
resent the dynamics of disease burden and immune response in a patient with MM.
The value of a model depends not only on the model structure, but also on the pa-
rameter values used with the model. In Gallaher et al. [29], our focus was on the
model structure; in this work, we focused on the parameter values and ranges. We
provided detailed information on parameter estimates based on studies in the lit-
erature and justified any necessary calculations. We performed global sensitivity
analyses to identify key parameters that affect the model dynamics. We considered
the identifiability of the entire system, as well as subsets of sensitive parameters, to
determine when the parameters can be estimated from clinical data. We used avail-
able summary steady-state data in the literature from patients with MM to inform
parameter values. And we looked at multiple numerical solutions of the system, with
the sensitive parameters varied through a range of values.

When we compared outcomes from two different global sensitivity methods, we
found that the top ten sensitive parameters of each method (results shown in Tables 3
and 4) have eight parameters in common. The SVD/QR decomposition results sup-
port up to eight sensitive parameters. Our core of eight most-sensitive parameters
is comprised of &y, Oy, 1y, Oc, 1y, rc, any, and acy. Note that none of the pa-
rameters directly related to the size of the Treg population appeared among the top
most-sensitive parameters. This appears to be in agreement with the data in Pessoa
et al. [59] showing that there are not significant differences in Treg levels between
healthy adults and patients with various stages of MM.

We allowed the set of eight most-sensitive parameters to vary in explorations of
the model, while we fixed the values of the other parameters. Small changes in the
sensitive parameters can result in large changes in the steady-state value of M. The
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sensitive parameters thus may indicate vulnerabilities in the model pathways for
therapeutic intervention, which can indicate promising therapies to try in combina-
tion.

The behavior of the model system for different values of two of the most sen-
sitive parameters, 8y, and rys, can be seen in Figs. (11)-(12). The widely different
outcomes when these sensitive parameters are varied agree with the bistable behav-
ior found previously in the analysis in Gallaher et al. [29].

Limitations of our model include the following: 1) our model tracks populations
in the peripheral blood, though MM is a disease based in the bone marrow; and 2)
our model includes terms in Equation (1) that represent immune system removal of
M protein even in the absence of disease, which may not be accurate. Additionally,
our ability to estimate parameters for this model would be improved if time series
data were available from individual patients with MM who have not yet been treated,
perhaps from historical data sets.

The careful parameter estimation, the work to determine sensitive parameters
in the model, the identifiability analysis, re-examination of parameter values for
the sensitive parameters, and the numerical simulations, all add confidence to the
structure and the parameter values of the model. This work provides the necessary
foundation for a natural next step: the prediction of optimal combination regimens
for patients with MM, and the experimental validation of such a prediction.
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