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Abstract Gliomas are the most common of all primary brain tumors. They are char-
acterized by their diffuse infiltration of the brain tissue and are uniformly fatal, with
glioblastoma being the most aggressive form of the disease. In recent years, the
over-expression of platelet-derived growth factor (PDGF) has been shown to pro-
duce tumors in experimental rodent models that closely resemble this human disease,
specifically the proneural subtype of glioblastoma. We have previously modeled this
system, focusing on the key attribute of these experimental tumors—the “recruit-
ment” of oligodendroglial progenitor cells (OPCs) to participate in tumor formation
by PDGF-expressing retrovirally transduced cells—in one dimension, with spherical
symmetry. However, it has been observed that these recruitable progenitor cells are
not uniformly distributed throughout the brain and that tumor cells migrate at different
rates depending on the material properties in different regions of the brain. Here we
model the differential diffusion of PDGF-expressing and recruited cell populations
via a system of partial differential equations with spatially variable diffusion coeffi-
cients and solve the equations in two spatial dimensions on a mouse brain atlas using a
flux-differencing numerical approach. Simulations of our in silico model demonstrate
qualitative agreement with the observed tumor distribution in the experimental animal
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system. Additionally, we show that while there are higher concentrations of OPCs
in white matter, the level of recruitment of these plays little role in the appearance
of “white matter disease,” where the tumor shows a preponderance for white matter.
Instead, simulations show that this is largely driven by the ratio of the diffusion rate in
white matter as compared to gray. However, this ratio has less effect on the speed of
tumor growth than does the degree of OPC recruitment in the tumor. It was observed
that tumor simulations with greater degrees of recruitment grow faster and develop
more nodular tumors than if there is no recruitment at all, similar to our prior results
from implementing our model in one dimension. Combined, these results show that
recruitment remains an important consideration in understanding and slowing glioma
growth.

Keywords Reaction–diffusion · Brain tumor · Glioma · Cancer · Platelet-derived
growth factor (PDGF)

1 Introduction

Glioblastoma (GBM) is an aggressive cancer and is the most common primary
brain tumor in adults. Malignant glioma cells are highly infiltrative of the normal
surrounding tissue; however, the tumor cells rarely metastasize out of the central
nervous system (CNS). The diffuse migration of tumor cells, combined with the
complex spatial heterogeneity of brain tissue, leaves a large portion of the tumor
cells invisible to clinical magnetic resonance imaging (MRI). This diffuse invasion
is a hallmark of gliomas which presents many challenges for treatment and disease
monitoring, particularly in the early stages of tumorigenesis, making in vivo and
in silico tumor models especially important in gaining understanding of this dis-
ease.

Animal studies utilizing platelet-derived growth factor (PDGF) have provided
improved models of glioma growth and evolution which recapitulate the diffuse,
differential invasion of tumor cells within different regions of the brain (Assanah
et al. 2006, 2009; Fomchenko and Holland 2007). These models demonstrate that
a PDGF-expressing retroviral injection into neonatal or adult rodent brain will
induce the formation of glioma-like tumors (Fig. 1) that appear histopathologi-
cally identical to human glioma (Assanah et al. 2006, 2009; Dai et al. 2001;
Westermark et al. 1995). Moreover, use of retroviruses that express higher levels
of PDGF drive the formation of more rapidly growing and higher-grade gliomas,
which exhibit robust vascular proliferation and necrosis (Shih et al. 2004). Much of
the rapid growth in this animal model is attributable to the observed phenomenon
that oligodendroglial progenitor cells (OPCs) transduced with the PDGF-expressing
retrovirus recruit other, untransduced OPCs (Assanah et al. 2006). OPCs express
the platelet-derived growth factor receptor PDGFRα, enabling them to participate
in autocrine and paracrine PDGF signaling loops with the PDGF secreted by the
retrovirally transduced OPCs. Thus, the paracrine PDGF signal from the trans-
duced OPCs to the untransduced OPCs causes the observed recruitment, whereby
untransduced cells show increased proliferation and migration rates consistent with
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cancer cells. These recruited OPCs contribute to the bulk of the tumor, comprising
as much as 80–90% of the overall mass. The transduced OPCs respond likewise,
reacting to the PDGF secreted by themselves and other nearby transduced OPCs,
and make up the remaining 10–20% of the experimental tumor (Assanah et al.
2006).

To better understand the experimental results from these animal studies and their
possible correlation to human disease, we previously adapted a reaction–diffusion
model of glioma growth in humans (Harpold and Alvord 2007), which we refer
to as the “Proliferation–Invasion” (PI) model, to include a recruitment process.
This model, which we have termed the “Proliferation–Invasion–Recruitment” (PIR)
model (Massey et al. 2012), consists of four coupled partial differential equations.
In this previous work, we assumed a simplified homogeneous brain and solved our
equations in one dimension with spherical symmetry. However, the experimental data
(see Fig. 1) motivate a reaction–diffusion model for tumor growth and migration that
includes tissue-dependent differential rates of diffusion. Moreover, it is understood
that the migration rates of glioma cells along myelinated axons, which compose the
white matter of the brain, are up to 100-fold faster than in the dense gray matter of
neuronal bodies and dendrites that compose the cortex (Chicoine and Silbergeld 1995;
Harpold and Alvord 2007). Thus, because glioma cells have been observed to move
much more quickly along white matter tracts, migration not only depends on the local
cellular density and the relative PDGF concentration gradient, which stimulates both
migration and proliferation, but also upon the tissue properties.

To account for this and to ascertain the contribution of these differential diffu-
sion rates, we have adapted our PIR model to run simulations on a two-dimensional
mouse brain map. We then take the diffusion coefficient to be defined through a piece-
wise constant function, where both transduced and recruitable glial progenitor cells
traveling in white matter take on a faster diffusion rate than those traveling in gray
matter. We show that differential diffusion rates allow for better morphological agree-
ment between simulation and experiment and that while these differential rates do

Fig. 1 Rodent brain slices. No tumors formed in rodents injected with control retrovirus, which lacked
the PDGF-expressing region (a), yet tumors formed in 100% of rodents injected with PDGF-expressing
retrovirus (b). The observed tumor shape in b suggests differential rates of tumor cell migration, with strong
preference for migration along the myelinated axons across the corpus callosum. Figure reproduced with
permission from Assanah et al. (2006)
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not contribute largely to the overall speed of tumor growth, they do affect the relative
preponderance of tumor cells (i.e., both transduced and recruitable OPCs) in the white
and gray matter regions.

2 Proliferation–Invasion–Recruitment Model, in Two Spatial
Dimensions

In the present model, there are three variables of interest: density of transduced cells
(c) that over–express PDGF; density of untransduced recruitable oligodendroglial
progenitor cells (r ); and the concentration of PDGF (p). Our proliferation–invasion–
recruitment (PIR) model equations account for the proliferation and diffusion of both
transduced and recruitable OPCs, at rates ρc,r and Dc,r , respectively, where the sub-
scripts denote the relevant cell type. Additionally, it includes the production of PDGF
by transduced cells and the consumption of PDGF by both cell types, at rates ηc and
qc,r , respectively. These contribute to the PDGF-driven recruitment of the recruitable
OPCs by setting up localized gradients of PDGF, which can also diffuse at rate Dp.
We schematizes the model in Fig. 2.

2.1 Model Equations

The equations for our model are as follows:

rate of change
of transduced
cell density

︷︸︸︷

∂c

∂t
=

net dispersal
of transduced cells

︷ ︸︸ ︷

∇ · (

Dc (c, r, p, x) ∇c
) +

net proliferation
of transduced cells
︷ ︸︸ ︷

ρc (c, r, p) c (1)

Fig. 2 Schematic representation of the model. Transduced cells (c, shown in green) produce PDGF (p,
shown in blue) at rate ηc; PDGF (p) is consumed by both transduced (c) and recruitable (r , shown in red)
glial progenitor cells at rates qc and qr , respectively. PDGF stimulates the proliferation and diffusion of
infected glial progenitor cells at rates ρc and Dc, respectively, and that of uninfected progenitors at rates ρr
and Dr . Note that PDGF molecules can also diffuse (at rate Dp , not illustrated). Equations relating these
are given in Sect. 2.1, and Table 1 lists the parameters and the values used
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rate of change
of recruitable
cell density

︷︸︸︷

∂r

∂t
=

net dispersal
of recruitable cells

︷ ︸︸ ︷

∇ · (

Dr (c, r, p, x)∇r
) +

net proliferation
of recruitable cells
︷ ︸︸ ︷

ρr (c, r, p) r (2)

rate of change
of PDGF

concentration
︷︸︸︷

∂p

∂t
=

diffusion
of PDGF

︷ ︸︸ ︷

∇ · (

Dp∇ p
) +

secretion
of PDGF by
transduced

cells
︷︸︸︷

ηcc −

consumption
of PDGF by
recruited
cells

︷ ︸︸ ︷

qrβ (p) r −

consumption
of PDGF by
transduced

cells
︷ ︸︸ ︷

qcβ (p) αc. (3)

Equations (1)–(3) are reaction–diffusion equations describing the movement of cells
and PDGF, as well as their synthesis, and in the case of PDGF, consumption. Notice
that the diffusion and proliferation rates in (1) and (2) are density dependent and
PDGF dependent. Accounting for these dependencies, the diffusion and proliferation
rates take the form:

Dc (c, r, p, x) = Dc (x)
β (p + pauto)

β (EC50) + β (p + pauto)

(

1 − c + r

K

)

(4)

Dr (c, r, p, x) = Dr (x)
β (p)

β (EC50) + β (p)

(

1 − c + r

K

)

(5)

ρc (c, r, p) = ρc
β (p + pauto)

β (EC50) + β (p + pauto)

(

1 − c + r

K

)

(6)

ρr (c, r, p) = ρr
β (p)

β (EC50) + β (p)

(

1 − c + r

K

)

(7)

where the PDGF receptor binding kinetics are described by:

β (p) = p

km + p
(8)

α = 1 − β(pauto). (9)

While these rates (4)–(7) look quite complicated, they can be broken down into three
constituent parts: rate parameter, PDGF dependence, and density dependence. The
density dependence ensures that we never exceed the carrying capacity. Although
this is traditionally not needed in the diffusion term for a single species, in our
model, the sum of both cell types is subjected to a single carrying capacity due to
the spatial constraints of the brain, making this a necessary component in our cel-
lular diffusion rate terms. Note that when space is limited, it is more difficult for
cells to move past one another or to divide; thus, the slowing of migration and pro-
liferation rates in such an environment is biologically realistic. PDGF dependence
in our rates is motivated by experimental data, which demonstrate that the motility
and cell division rates of OPCs are dependent on local PDGF concentration (Arm-
strong et al. 1990; Frost et al. 2009; Pringle et al. 1989). These rates are modulated
both by PDGF receptor binding kinetics (that also modulate the PDGF consumption
rates) and by what we call downstream dose-response. The PDGF receptor binding

123



S. C. Massey et al.

kinetics given in (8) are based on Michaelis–Menten enzyme kinetics, with the tradi-
tional parameter km being the concentration of PDGF at which half of the maximal
binding rate is achieved. However, this is insufficient to describe the downstream
proliferation and migration dose responses to PDGF, leading to our derivation of
the more complicated ratio of β’s. This is explained more thoroughly in Massey
et al. (2012), but essentially allows for the incorporation of the downstream dose
response, with parameter EC50, and the receptor binding, with parameter km, in a way
that fits the data. The addition of the parameter pauto allows us to include effects of
autocrine signaling by transduced cells, which is also more thoroughly explained in
Massey et al. (2012). Finally, the diffusion and proliferation rate parameters, Dc,r and
ρc,r , respectively, indicate the maximum attainable diffusion and proliferation rates.
The proliferation rate parameters are fixed, but we allow the diffusion parameters to
vary spatially, specifying different diffusion rates in gray versus white matter brain
regions.

The rates of diffusion in (4) and (5) are functions of the spatial variable x = (x, y).
It is assumed that these functions are piecewise constant depending on the local tissue
properties, specifically, whether it is gray or white matter:

Dc,r (x) =

⎧

⎪
⎨

⎪
⎩

D(c,r) for x ∈ white matter

RwgD(c,r) for x ∈ gray matter

0 for x /∈ brain tissue

(10)

as is similarly done in proliferation–invasion (PI) model simulations implemented on a
brain atlas (Swanson et al. 2000, 2002). Note, it is the atlas that delineates the gray and
white regions of the brain. The unitless parameter Rwg represents the degree to which
diffusion in white matter is faster than that in gray matter. We vary this parameter in
simulations, with Rwg > 1, to see how this affects tumor growth in our model. Dc,r ,
Rwg and all other parameters are listed in Table 1.

The model equations we have presented here are more thoroughly derived in the
supplemental material ofMassey et al. (2012), where we developed a one-dimensional
model of the experimental PDGF-driven tumors. However, the model presented here
differs from that in Massey et al. (2012) in a few ways. First, by implementing our
model in two dimensions we are able to incorporate different diffusion rates in gray
versus white matter regions, as given by (10). Second, we have omitted chemotaxis.
While there is evidence that OPCs chemotax in gradients of PDGF (Armstrong et al.
1990), there is also evidence that these cells move in response to PDGF in a way that
is not chemotactic (Frost et al. 2009). Based on the cell tracking work we have done
(Ivkovic et al. 2012; Massey et al. 2012), our analysis indicates that the movement
of these cells can be mathematically modeled sufficiently using diffusion alone—
therefore, taxis or directed migration terms, are not included. Finally, a third change
is the lack of an equation for the remaining brain cells that do not actively participate
in the formation of tumors. While these cells would contribute to the total cell den-
sity, we have made the simplifying assumption in both this model and our previous
1D model that they are passive and simply die as the tumor expands. This assump-
tion made the contribution of these cells to the tumor dynamics negligible, as we
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Table 1 Model parameters and their values

Symbol Definition Value Units Source

Dc Max diffusion rate of transduced
cells in gray matter

5.8 × 10−5 cm2

day
a

Dr Max diffusion rate of recruited
cells in gray matter

5.8 × 10−5 cm2

day
a

Rwg Ratio of diffusion rates in white
versus gray

10 Unitless d

Dp Diffusion rate of PDGF 5 × 10−4 cm2

day
a,b

ρc Max proliferation rate of
transduced cells

ln(2)
18/24 day−1 a

ρr Max proliferation rate of
recruited cells

ln(2)
18/24 day−1 a

ηc Rate of PDGF secretion by
transduced cells

10−5 ng/cell
day

a

qc Max rate of PDGF uptake by
transduced cells

10−5.15 ng/cell
day

a

qr Max rate of PDGF uptake by
recruited cells

10−5.15 ng/cell
day

a

K Cellular carrying capacity 2.3 × 108 cells
mL

a

km [PDGF] at which half max
binding occurs

30 ng
mL

a,c

EC50 [PDGF] achieving half max dose
response

101/2 ng
mL

a,c

pauto Autocrine PDGF level for
transduced cells

1 ng
mL

a

O2a Baseline population of OPCs in
gray matter

2.2 × 106 ng
mL

a

The derivation of most parameters can be found inMassey et al. (2012) and its supplemental material. Many
are experimentally derived, or came from a combination of literature sources and testing in simulations
a Massey et al. (2012)
b Thorne et al. (2004)
c Pringle et al. (1989)
d Note that the value given here for Rwg comes from varying the parameter in simulations, as described in
the results (Sect. 3)

found that removing this population from our 1D model did not alter the simula-
tion results. Additionally, our assumption is biologically realistic, since the carrying
capacity of the brain is approximately three times the normally observed average cel-
lular density of the brain. Invading tumor cells would deplete resources and cause
these non-tumor cells to die off before the total cell population nears the carrying
capacity.
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2.2 Initial and Boundary Conditions

Initial Conditions To set the initial conditions for this problem, we take the baseline
population of glial progenitor cells (OPCs) in normal healthy brain tissue (given by
parameter O2a), and define a spherical region around the site of the injection wherein
we assume that most (99%) of these progenitor cells are infected:

c(x = R, t = 0) =
{

0.99 · O2a(x) forR < 0.03 cm

0 else
(11)

where
R2 = (x − xinjection)

2 + (y − yinjection)
2 (12)

is the radial distance from the injection site (xinjection, yinjection).
Any OPCs inside or outside of this region that are not infected following the injec-

tion, and thus not transduced, are considered to be “recruited” and “recruitable” cells,
respectively.

r(x = R, t = 0) =
{

0.01 · O2a(x) forR < 0.03 cm

O2a(x) else.
(13)

Note that O2a(x) is spatially dependent, since there are more OPCs in white matter
than in gray matter. In practice, we let O2a represent the density of these cells in gray
matter and set 8/3 · O2a to represent the density in white matter, since OPCs make
up approximately 3% of the normal gray matter and about 8% of the normal white
matter (Nunes et al. 2003; Rhee et al. 2009; Roy et al. 1999):

O2a(x) =
{

O2a x ∈ gray matter
8
3O2a x ∈ white matter.

(14)

The injection site for our simulations was chosen by determining the approximate
center of the tumor in Fig. 1b and selecting a similar location in the computational
domain specified by the brain atlas.

For the initial PDGF concentration, we take

p(R, 0) ≡ 0

sincewe assume that there is no PDGF in the tissue until it is secreted by the transduced
cells. In reality, there may be some small amount released in response to the injury
induced by injecting the brain; however, we assume that to be negligible.

Boundary Conditions The physical boundary conditions of the problem are no-flux
of tumor cells outside of the brain B, so that

∇q · n = 0 (15)
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where q = [c, r, p]′ and n is the vector normal to the boundary ∂B.

Computational Domain We utilize a brain atlas (Ma et al. 2005, 2008) to define our
computational domain. This atlas specifies, on a Cartesian grid with resolution 0.01
cm, the gray and white regions inside the brain where the tumor may grow, as well
as the ventricles and anything outside the brain where it does not. (The brain atlas we
used is open source; details may be found online at http://brainatlas.mbi.ufl.edu.)

2.3 Numerical Method

To implement our model, we use a fractional step approach. First, we use Godunov
operator splitting to solve the reaction and diffusion terms in two separate steps.
Further, we split the spatial dimensions to turn our two-dimensional problem into a
sequence of two locally one-dimensional (LOD) problems. At each iteration of our
method, we first solve the diffusion component, coupling the LOD technique with
the Crank Nicholson (CN) method. This allows us to solve in the x- and then the
y-directions in two sweeps, rather than using a ten point CN stencil, greatly increas-
ing computational efficiency. Next, we solve the reaction terms using the TRBDF2
method (that is, the two-stage Runge–Kutta method combining the trapezoidal rule
with the second-order backward differentiation formula). Further detail about how
this was implemented in code form can be found at: https://github.com/scmassey/2D_
Proliferation-Invasion-Recruitment. Additional details about these numerical meth-
ods can be found in LeVeque (2002, 2007). We remark that despite the discontinuous
diffusion coefficient, no jump conditions were formally introduced. This decision is
supported by an analysis of the differential diffusion rates in the PI model across the
gray–white interface that was done in Belmonte-Beitia et al. (2013) where the authors
showed solutions of this model would be smooth and would not have a build up of
cells on either side of such a discontinuity.

2.4 Comparing Simulated Tumor Growth

Because gliomas are diffuse, lacking a defined edge, we compare simulated tumors
of similar size by looking at a region defined by a density threshold. For the PI model
(Harpold and Alvord 2007), we commonly focus on the region where the cell den-
sity is ≥80% of the carrying capacity, since this corresponds with the hypercellular
region of tumor that is visible on T1-weighted MRI with Gadolinium contrast agent
(T1Gd MRI). Therefore, we chose to use this density for comparing our PIR model
simulated tumors. Additionally, rather than describing the size of these regions as an
area, we instead use the circular equivalent radius. Solutions of this model are known
to asymptotically approach a linear radial growth profile in homogeneous conditions.
Therefore, it is natural to compare simulated tumors at various time points with their
circular equivalent radii. Throughout the results, we will denote a circular equivalent
radius that corresponds to the region where the cellular density is ≥ 80% of carrying
capacity as the “80% radius” or “80% circular equivalent radius.”
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For comparing growth in specific regions of the tumor, we set up two particular
axes originating at the center of the tumor (where the simulated tumor was initiated).
One such axis is vertical, passing through the white matter portion of the brain atlas,
and the other is horizontal, remaining strictly in the gray matter portion of the atlas.
Having these axes passing through the different regions enables us to see how cell
densities are affected by the differential diffusion rate in these two tissues.

3 Simulation Results

3.1 Qualitative Match Between 2d Simulation and Experimental Tumor

Simulations of the two-dimensional PIR model display qualitatively similar patterns
of tumor invasion as those observed in the experimental murine system (Fig. 3). In par-
ticular, the gray and white matter heterogeneity allows for good overall morphological
agreement with experimental murine tumors. The former one-dimensional model only
simulated tumors to grow in a spherical shape, while the experimental tumors show a
clear preference for growing along white matter tracts (Fig. 3a). The addition of both
the spatially heterogeneous initial condition for recruitable OPCs (Sect. 2.2) and the
differential cellular diffusion rate in gray versus white matter (Eqs. 10) contributes
to the improved agreement between model simulations and the spatial distribution of
tumor cells in the animal model. Note that because we can only approximate the histo-
logical slice with a slice from the atlas, we cannot register the simulation to histology
images. Thus, a quantitative comparison would not be more informative than a visual
qualitative comparison.

Varying the ratio of the diffusion rates inwhite and graymatter, Rwg,wedetermined
that the 10-fold higher diffusion rate that has been used in PI model simulations of
human tumors results in the best agreement between simulation and histology. Values
of Rwg smaller than 10 look more circular, and values of Rwg greater than 10 appear
to travel much further along the white matter tracts (see Figs. 6 or 7 for examples

Fig. 3 Comparison of simulated tumor and hematoxylin and eosin (H&E) of experimental PDGF-driven
tumor. a Tissue slice from an experimental PDGF-driven tumor stained with H&E, reproduced with permis-
sion from Assanah et al. (2006). b Simulated tumor using our 2D PIR model implemented on a rodent brain
atlas, with parameter Rwg = 10. Color bar is on a log scale and shows the total density of recruitable and
transduced cells. Gray outlined region in the middle shows the corpus callosum. The purple region shows
the area where the tumor resides, while the pink is primarily reflective of the baseline density of recruitable
cells
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of simulations with lower and higher values of Rwg). The effects of varying Rwg are
explored more in Sect. 3.3.

3.2 PDGF Secretion Rates Positively Correlate with Tumor Growth Rates and
Nodularity

We simulated tumors with different values of PDGF secretion rate, ηc, for 30 days
and then compared results at that time point to look at how this parameter affects the
speed of overall tumor growth. Our results show that the tumors with little or no PDGF
secretion are significantly smaller than those with moderate or high PDGF secretion
(Fig. 4a–c). This demonstrates that PDGF secretion, and thus recruitment, greatly
contributes to the speed at which these tumors grow, with higher secretion resulting in
fast-growing tumors, and low secretion resulting in relatively slow-growing tumors.

Next, we compared tumor simulations with the different rates of PDGF secretion
(i.e., different values of ηc) at the same size, as determined by their 80% circular
equivalent radii. To do this, we simulated tumors until they had a circular equivalent
radius of 0.2 cm (2 mm) at the 80% density threshold as described in Sect. 2.4. This
comparison reveals that the tumors with less recruitment are more diffuse (Fig. 5).
Specifically, the tumor with no PDGF secretion, and thus no recruitment, has a more
extensive region of tumor extending beyond the≥80% density threshold, showing the
greatest degree of diffuse invasion. The tumor with the most recruitment (on the right)
has the least amount of tumor extending beyond this 80% density threshold, making
it the least diffusely invasive.

In the aforementioned simulations and associated figures, we did not vary Rwg but
held it fixed at 10 (as discussed in Sect. 3.1). This enabled us to examine the spatially
dependent changes that occur due to tumor growth in gray versus white matter brain
regionswithout the additional signal of variedmagnitude. Looking across two different
axes of the tumor, one in gray matter only, and the other passing through the white
matter (labeled x and y, respectively, in both Figs. 4 and 5), we can see the effect
of having a differential diffusion rate upon the cellular density and the proportion of
tumor that is made up of recruited cells. In the white matter, we see that the tumor cell
density curve is less steep due to increased diffusion in this region (compare Fig. 4c
with b, and likewise, Fig. 5c with b). There is also a slight increase in cell density
in this region due to the presence of more background recruitable cells in the white
matter. Correspondingly, the proportion of tumor made up by recruited cells is a bit
higher at the leading “edge” when it is in white matter (compare Fig. 5e with d), while
increases are less steep in this region (compare Fig. 4e with d). This is likely due to
both the increase in background recruitable cells in the white matter, as well as the
increased invasion rate of transduced cells happening at the “edge”—the transitional
zone from dense tumor to normal brain, where there are mostly only recruitable OPCs
(recruited fraction near 1)—when it passes through the white matter region. Note
that the increases in Fig. 5d, e for the curves at approximately 0.3 cm is due to cells
diffusing out of the corpus callosum, just beyond the left end of the axis labeled x, into
the gray matter. That is, cells and PDGF diffusing toward the right out of the corpus
callosum increase the number of recruited cells in that region.
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Fig. 4 Tumors of varying degrees of recruitment simulated for same length of time (30 days). a Simulated
tumors at 30 days of growth, with different values for parameter ηc to simulate varied recruitment (from
left to right: ηc = 0, 10−6, 10−5, and 10−4 ng/cell/day, respectively). White lines labeled x and y show
the locations from which we sampled the cellular densities that are plotted in panels b–e; these correspond
to the x and y labels underneath those panels. These start at the center where the simulation was initialized,
then x extends out in only gray matter, while y extends through the corpus callosum (white matter), as
indicated by the vertical lines in c and e. b Cell densities versus space, sampled in an exclusively gray
matter region. c Cell densities versus space, sampled in a region that passes through white matter (vertical
lines). d Fraction of tumor that is made up of recruited progenitor cells versus space. e Fraction of tumor
that is made up of recruited cells versus space, passing through white matter (vertical lines)

3.3 Influence of Differential Gray Versus White Matter Diffusion Rates

To better understand the contribution of differential rates of diffusion in gray versus
white matter, Rwg , as separate from that of PDGF secretion rate, ηc, we ran a series
of simulations varying both independently. We ran 16 simulations, with four values
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Fig. 5 Tumors of varying degrees of recruitment simulated until reaching same 80% circularly equivalent
radius (0.2 cm). Simulated tumors with a circular equivalent radius of 0.2 cm at the≥80% density threshold
(see Sect. 2.4), having different values of ηc to indicate varying degrees of recruitment (from left to right:
ηc = 0, 10−6, 10−5, and 10−4 ng/cell/day, respectively). The region of cell density ≥80% of carrying
capacity is outlined in yellow. White lines labeled x and y show the locations from which we sampled the
cellular densities that are plotted in panels b–e; these correspond to the x and y labels underneath those
panels. These start at the center where the simulation was initialized and then x extends out in only gray
matter, while y extends through the corpus callosum (white matter), as indicated by the vertical lines in c
and e. b Cell densities versus space, sampled in gray matter region. c Cell densities versus space, sampled
through white matter (vertical lines). d Fraction of tumor that is made up of recruited progenitor cells versus
space, staying in only gray matter. e Fraction of tumor that is made up of recruited progenitor cells versus
space, passing through white matter (vertical lines)

of Rwg and four values of ηc, and compared the results at similar tumor sizes (at the
80% density threshold described in Sect. 2.4). We then focused comparisons on two
outcomes where we expected both parameters to play a significant role. In the first,
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we looked at the fraction of total tumor residing in the white matter regions of the
brain. The second comparison examined the time required for the tumors to reach the
specified size, essentially indicating the speed of growth.

Our first comparison shows that the fraction of tumor cells in white matter regions
increases both with increasing Rwg and with increasing ηc, as expected. However,
at most sizes we observe that it is much more strongly affected by Rwg (Fig. 6).
At large tumor sizes, the fraction decreases, corresponding to the tumor growing
beyond the size of the white matter regions. Note that because our simulations step
in time, we chose for each heatmap the first time point at which a simulated tumor
was greater than or equal to the specified size. Thus, not all simulated tumors are
precisely the same size in the heatmaps. In the case of the heatmap of tumors with 0.1
cm 80% radius, where the “edge” of the tumor is very close to the corpus callosum,
the variations in size could result in a significant increase in the number of cells in the
white matter. This is likely the cause for the disruption, in this particular heatmap, of
the pattern observed in Fig. 6. Overall, the relationship between the fraction of tumor
in white matter and Rwg suggests that tumors showing a proclivity for white matter
regions may have greater differential rates of cellular diffusion in white matter than
in gray.

In our second comparison, we examined time duration of growth required to reach
specific sizes at the 80% of carrying capacity density threshold described in Sect. 2.4.
We see that both Rwg and ηc correspond with faster growth, but that ηc is the more
influential parameter (Fig. 7). These heatmaps show that the speed of these tumors’
growth depends highly on the rate of PDGF secretion and thus the degree of recruit-
ment. This relationship is particularly pronounced at smaller tumor sizes, where Rwg

appears to have very little effect. At extremely large tumor sizes, where the size of the
dense tumor core approaches the size of the brain itself, Rwg appears to play a greater
role in contributing to this speed of growth. However, this is likely of little practical
importance, since tumors are typically lethal prior to reaching such large sizes. The
result that recruitment plays a significant role in the growth rate of tumors suggests
that reducing PDGF signal, perhaps through use of PDGF inhibitor therapies or other
drugs targeting the PDGF pathway, could greatly slow the growth of tumors that show
a high degree of OPC recruitment.

4 Discussion

We have shown that our reaction–diffusion PDE model for glioma growth reproduces
the growth patterns observed in vivo (Fig. 3). The morphology of the tumor growth
depends critically on differential rates of migration of tumor cells through the brain.
Without the differential rates, we would obtain spherical symmetry equivalent to that
in the one-dimensional PIR model (Massey et al. 2012). Moreover, the degree to
which the rate of diffusion in white matter exceeds that of gray matter can greatly
affect the shape and location of the tumor cells (Figs. 6, 7). Our simulations show
that having greatly different diffusion rates in these regions can lead to tumors that
fill the entire corpus callosum of the brain within a short period of time. Interest-
ingly, this is consistent with observations from human patients, some of whom have
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Fig. 6 Fraction of tumor cells inwhitematter regions at indicated sizes for varied ratios, Rwg , of differential
cellular diffusion rates and varied PDGF secretion rates, ηc . Each heatmap relates to a different 80% radius
(see Sect. 2.4), as indicated above the heatmap. Arrows show direction of increasing parameter values:
going down the columns of each heatmap, we have Rwg = 5, 10, 50, and 100, and from left to right along
the rows we have ηc = 0, 10−6, 10−5, and 10−4 ng/mL/day. The color map indicates the fraction of
tumor that is in white matter structures as opposed to gray matter. The four tumor simulations shown a–d
correspond with the combinations of the high and low extreme values of these two parameters, Rwg and
ηc , at the point when they each have a 0.2-cm 80% circular equivalent radius

tumors that are said to display a “preference” for white matter, or whose tumors are
described as “white matter disease.” Prior to our results, we supposed that recruit-
ment might play an important role in this, since there are more recruitable OPCs in
white matter regions. Based on the results we found, however, we would hypothe-
size that the observation of “white matter disease” in human patients could also be
related to a high ratio of tumor cell motility rates in white matter as compared to
gray.

Additionally,we found thatOPC recruitment results in a less-diffuse, faster-growing
tumor, which is consistent with what we found using the one-dimensional spherically
symmetric PIR model (Massey et al. 2012). Importantly, we observe that this impact
on growth rate is preserved over a broad range of differential diffusion rates between
gray and white matter (Figs. 4, 5). This suggests that recruitment is a significant factor
to consider in slowing the growth of these experimental tumors, and possibly in the
proneural human glioblastomas they resemble. That is, these results suggest that more
rapidly growing untreated human tumors might be more likely to show recruitment
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Fig. 7 Growth time required to reach indicated sizes for varied ratios, Rwg , of differential cellular diffusion
rates and varied PDGF secretion rates, ηc . Each heatmap relates to a different 80% radius (see Sect. 2.4),
as indicated above the heatmap. Arrows show direction of increasing parameter values. Going down the
columns of each heatmap, Rwg = 5, 10, 50, and 100, and from left to right along the rows ηc = 0, 10−6,

10−5, and 10−4 ng/mL/day. The color map indicates the time (in days) required to reach the indicated
size. The four tumor simulations shown a–d correspond with the combinations of the high and low extreme
values of Rwg and ηc , at the point when they each have a 0.2-cm 80% circular equivalent radius

of oligodendroglial progenitor cells. Interrupting the paracrine signaling that leads to
recruitment could then be key to slowing the growth of these more rapidly growing
tumors, leading to longer patient survival times.
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