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Abstract
To provide a better understanding of the relationship between primary tumor growth rates and metastatic

burden, we present a method that bridges tumor growth dynamics at the population level, extracted from the
SEER database, to those at the tissue level. Specifically, with this method, we are able to relate estimates of tumor
growth rates and metastatic burden derived from a population-level model to estimates of the primary tumor
vascular response and the circulating tumor cell (CTC) fraction derived from a tissue-level model. Variation in the
population-level model parameters produces differences in cancer-specific survival and cure fraction. Variation
in the tissue-level model parameters produces different primary tumor dynamics that subsequently lead to
different growth dynamics of the CTCs. Ourmethod to bridge the population and tissue scales was applied to lung
and breast cancer separately, and the results were compared. The population model suggests that lung tumors
grow faster and shed a significant number of lethal metastatic cells at small sizes, whereas breast tumors grow
slower and do not significantly shed lethal metastatic cells until becoming larger. Although the tissue-level model
does not explicitly model the metastatic population, we are able to disengage the direct dependency of the
metastatic burden onprimary tumor growth by introducing theCTCpopulation as an intermediary and assuming
dependency. We calibrate the tissue-level model to produce results consistent with the population model while
also revealing a more dynamic relationship between the primary tumor and the CTCs. This leads to exponential
tumor growth in lung and power law tumor growth in breast. We conclude that the vascular response of the
primary tumor is a major player in the dynamics of both the primary tumor and the CTCs, and is significantly
different in breast and lung cancer. Cancer Res; 74(2); 426–35. �2013 AACR.

Introduction
Mathematical models of tumor growth and progression

have been developed at both the population and tissue scales,

but rarely have these 2 scales been connected. This disconnect
is not surprising given the varied scope of interactions dom-
inating each scale. However, the ability to infer tumor growth
dynamics that are consistent at both scales promises to enrich
our understanding of disease progression and improve our
predictions of treatment response and outcomes. Historically,
growth dynamics were studied by picking an appropriate
growth law, from exponential to power law to Gompertzian,
to provide better fits with tumor growth data, but often the
causative factors for differences in growth behavior are not
identified (1). Although establishing the underlying drivers of
tumor growth dynamics has always been a persistent objective
in cancer research, frequently the focus is on a specific aspect
on a specific scale. To get a handle on the causative factors, we
need to dig a little deeper and examine this growth in a more
mechanistic and systematic fashion.

We are interested in relating the growth of the primary
tumor to the likelihood of survival frommetastatic burden. We
recognize that there is a complex path from neoplasm to
advanced disease that involves many steps: primary growth,
local invasion, entrance to and survival within the blood-
stream, evasion of the immune system, and localization to a
new target organ. Without taking into account all of these
steps, we use amore comprehensive approach. Specifically, we
connect the primary tumor growth dynamics to themetastatic
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Major Findings
By bridging a population-scale model to a tissue-scale

model of tumor dynamics, we have identified the vascular
response as a primary cause for the differences in tumor
growth rates and metastatic disease between two common
cancers: breast and lung cancer.
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Quick Guide to Equations and Assumptions
We construct our tissue-scale model from a system of one-dimensional PDEs that describe tumor growth radially and the

corresponding metastatic burden based on the angiogenic cascade. There are 5 cell types: 4 states of tumor cells and the
vasculature (cf. Fig. 2). The cells within the tumor can be normoxic (n), hypoxic (h), or necrotic (d). The circulating tumor cells (c)
have left the primary site and reside in the greater vascular system. The local vasculature (v) is also present and plays a significant
role in determining the rates of flow between these compartments. This model is both a development and a simplification of the
works of Swanson and colleagues (4) and Hinow and colleagues (5).
We start with a small (�3 mmdiameter) initial lump of normoxic tumor cells and a constant vascular density (2%) throughout.

Of the tumor cells, only the normoxic cells proliferate, and they do so at a rate mn proportional to the amount of vasculature
present. They become hypoxic because of lack of vasculature at a rate an. Once hypoxic, the cells may reoxygenate at a rate ah
proportional to the vascular density or become chronically hypoxic, that is necrotic, at a rate dh. Normoxic cells and hypoxic cells
enter the bloodstream at rates bn and bh, respectively, also proportional to the vascular density. The vascular density is itself
influenced by a rate of proliferation and death, the former rate mv being proportional to the hypoxic fraction and the latter with a
rate of dv. The dependence of vascular proliferation on the hypoxic cell density is an indirect consequence of vascular endothelial
growth factor (VEGF) production by the hypoxic cells, which in turn stimulates vascular growth (6), that is the angiogenic
response. Production of proliferating cells is stifled by the term (1�w) as the total density of cells in the tumor (w¼ nþ hþ dþ v)
approach the carrying capacity, which is scaled to 1.
There are additional spatially dependent interactions that cannot be represented in the compartment diagram of Fig. 2. The

normoxic, hypoxic, and vascular cells all undergo randommigratory dispersal. Also, the vascular cells have a chemotactic term that
drives them up the gradient of hypoxic cells, mimicking a chemotactic response to higher concentrations of VEGF (which would
naturally occur where the higher density of hypoxic cells exist). A system of coupled partial differential equations for the vascular
cells and each type of tumor cell describes their change over time and space (cf. Eq. A).

Equations
For normoxic (n), hypoxic (h), necrotic (d), circulating (c), and vascular (v) cells, the equations are:

qn
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The values n, h, d, c, and v are expressed as densities representing the percentage of the local volume occupied. A backward finite
difference method is used for solving the coupled PDEs, which is described in Supplementary Data Appendix 1.

Model assumptions
We assume in this model that there are 5 compartments representing distinct cell types. Although there is an obvious

continuum between normoxia and hypoxia, we divide this range into just 2 qualitatively different cell types. As with all continuum
models that are based on a PDE paradigm, the system is completely deterministic and assumes all compartments within a unit
volume are equally mixed. All cells of the same type behave the same way, and only differences in density drive differences in
dynamics. The maximum cell density within the tumor is assumed to be the same throughout.
Because the tumor is defined by a density of cells that can be diffuse at the leading edge, the border of the tumor is not well

defined. Therefore, for all volume calculations, we define the tumor's leading edge to be where the normoxic cancer cells taper off
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burden utilizing 2 models: (i) a stochastic model at the pop-
ulation scale and (ii) a differential equation model at the tissue
scale.

At the population level, we are able to look at large-scale
trends from actual patient outcomes. From this perspective,
we distinguish qualitative differences between 2 cancer types,
namely breast and lung, and estimate tumor growth rates and
patient survival rates. At the tissue level, we formulate a system
of partial differential equations (PDE) to develop a spatio-
temporal model of tumor growth and invasion. With this
multiscale model approach, we can match the predicted
growth dynamics from the population scale with those from
the tissue scale. At the tissue scale, we can estimate the relative
distributions of the different cell types at various stages of
tumor growth to highlight differences between breast and lung
cancer.

The population model is fit to data from patients with
invasive ductal carcinoma (IDC) breast cancer and non–small
cell lung cancer (NSCLC) from the NCI Surveillance Epidemi-
ology and End Results (SEER) database (2). The SEER database
collects and publishes cancer incidence and survival data from
population-based cancer registries, including information
such as patient demographics, primary tumor site, tumor
morphology and stage at diagnosis, treatment, and follow-up
for vital status. The basic scheme of the statistical population
model is shown in Fig. 1. By using a Monte Carlo simulation
model of clinical cancer-stage progression and fitting this
model to the survival curves of 2 specific cancers, Lin and
Plevritis obtained 2 metrics that will be used to calibrate the
tissue-scale model. They estimated median tumor volume
doubling times of 135 days for NSCLC and 252 days for IDC.
In addition, cancer-specific cure fractions were estimated. The

to occupy only 2% of the space. This number is somewhat arbitrary, but the slope is consistently steep enough that the volumewill
not varymuch if another small valuewere taken. Tumor volumes are calculated assuming spherical symmetry.Measuring from the
center of the tumor to this edge gives the radius (R), from which we find the primary tumor volume as V ¼ 4/3pR3.
To calculate the number of cells entering the circulation at each time point, wefind the number of circulating cells present in the

local volume by summing up concentric spherical shells at consecutive radial intervals. The total number of cells is the summation
over all shells:

CTCs ¼
X
i

4

3
pðx3iþ1 � x3i Þ

ciþ1 þ ci
2

r0; ðBÞ

where xi is the distance from the tumor's center, ci is the relative density of cells subject to intravasation at that position, and r0 is
the average cellular density of the tumor. Under the assumption that all cells are 20-mm-diameter spheres and densely packed into
the volume,we estimate this density asr0� 108 cells/cm3. A running tab is kept as cells leave the local region at each timepoint and
take residence in the blood as CTCs.
The tissue model assumes no self-seeding, death, extravasation, or growth of circulating cells within the bloodstream or as

established metastases. This is only a consideration of those cells that have left the local region of the tumor, which is assumed to
be proportional to the metastatic population. Because many of the parameters involving metastases cannot be experimentally
measured, including additional variables and/or parameters here would only add further complexity with little concrete gain in
our understanding. We therefore bypass many of these issues by the gross simplification that an increase in the number of CTCs
shedding from the primary correlates with an increased risk of metastases.

Figure 1. Stochastic population-
level model diagram of cancer
progression from previous work of
Lin and Plevritis (3). The thin gray
curve represents the growth of the
primary tumor and the thick black
curve represents the lethal
metastatic burden. This same
modeling framework is applied to
both IDC and NSCLC SEER data.
Reproduced with kind permission
from Springer ScienceþBusiness
Media: Cancer Causes and
Control, Comparing the benefits of
screening for breast cancer and
lung cancer using a novel natural
history model, 23, 2012, p. 176, Lin
and Plevritis, Fig. 1.
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primary tumor size atwhich the likelihood of cure is at 50% (i.e.,
the point at which the tumor goes from likely to be cured to
unlikely to be cured) occurs at diameters of 8 and 19 mm for
NSCLC and IDC, respectively. Because this model has already
been published, please see ref. 3 for further details. We will
primarily focus on defining the tissue-scale model.
The contrasting trends of lung and breast cancers found

from the statistical population model stimulates our inquiry:
what are the major drivers of these very different responses?
The population scale does not provide sufficient detail to
answer this question, so we take a closer look at the tissue
level to resolve the basic growth dynamics. We make the
hypothesis that the differences are driven primarily by the
degree of vascular response that the tumor elicits. Our ratio-
nale is that the close association of the lung tissue with the
vasculature should contribute to faster, more efficient recruit-
ment. The vasculature also necessarily connects the primary
tumor to metastatic burden as the avenue for escape and
translocation.

Materials and Methods
Using appropriate parameterizations for the PDEmodel, we

match the estimates of the statistical population model for
tumor volume doubling time and metastatic burden for both
breast and lung. There are several parameters that are more
significant for making the tissue growth dynamics fit the
population-scale metrics. First, we adjust the migration of
normoxic cells (Dn) and the proliferation of normoxic cells
(mn) to set a baseline growth rate. Second, we set the rate that
cells leave the tumor from the normoxic population (bn) and
the hypoxic population (bh) to approximate the growth of the
circulating tumor cell population. This is an obvious start for a
loose fit, but we want to understand how differences in
vascular interactions lead to different dynamics. So, given a
basefit to dynamics that lie somewhere in between those of the
breast tumor and those of the lung tumor, we inspect which
parameters most significantly allow switching between the
two. Rigorous parameter optimization is not the intent of this
particular analysis, but it is rather to demonstrate 2 divergent

behaviors. However, further analysis of the parameter space is
presented in Supplementary Data Appendix 2 for a more
detailed illustration of the system dynamics.

Results
We find that there are 3 parameters that most significantly

affect switching from one tumor growth dynamic to the other:
the vascular proliferation rate (mv), the rate of deoxygenation
(an), and the rate of reoxygenation (ah). Both an and ah are
scaled together, so they will collectively be referred to as one
parameter (a) as a representation of the rate of switching
between well-oxygenated and hypoxic cell states. We define all
other parameters as constants to optimize the fits obtained
when only these 2 parameters change. The values obtained
were fit roughly and tabulated in Table 1.

Vascular response is a key driver for tumor growth
differences

Upon fitting the tissue model to the estimates of the popu-
lation model, we see a dramatic difference in vascular re-
sponse and distribution at the end of 2.5 years (cf. Fig. 3).
The breast tumor growth simulation in the left panel of Fig. 3
shows the normoxic cells growing outward followed by a
swell of hypoxic cells. The vasculature responds to the
increased hypoxic density by traveling up that gradient while
the inner core becomes necrotic with time. This slower grow-
ing tumor shows the vasculature is taking up a maximum
density of around 5% of the volume at the leading edge. The
simulation of a tumor in lung tissue at the same time point is
shown in the right panel of Fig. 3. In this case, the hypoxic
population has overtaken the normoxic population through-
out most of the tumor. This large hypoxic to normoxic ratio
stimulates the vasculature to the point that it amounts to
nearly half of the tumor volume. As a consequence, the tumor
growth is much faster.

Limited vascular response leads to power law growth
Tumor volume over time for the breast and lung simula-

tions is shown in Fig. 4. Each curve is fit to both an expo-
nential function, that is V ¼ aebt, and a power law function,
that is V ¼ ctn. For the lung tumor simulation, exponential
growth is a better fit, but for the breast tumor simulation, a
power law fits better. It seems that with an adequate vascular
response, as in the case of the lung tumor, unlimited expo-
nential growth is supported, but a reduction of vascular
activity comes with a limit on the growth, as seen in the
breast tumor simulation.

To connect these growth rates to the statistical population
model using 2 different growth trends, we need a common
measure. Exponential growth has a constant tumor volume
doubling time (TVDT), but power law growth will yield an
increasing TVDT over time as the growth rate slows down. We
therefore need to pick a relevant range of tumor volumes at
which TVDT is usually measured for a good comparison. The
method for obtaining TVDTs frombreast and lung are outlined
in Supplementary Data Appendix 3. These TVDTs per diameter
are shown in the left panel of Fig. 5. Using Equation 2s in
Supplementary Data at 3 cm, a typical tumor size from the

Figure 2. Schematic representation of the tissue model showing the
interactions between the tumor components and the vasculature.
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SEER dataset in the absence of screening, we get a TVDT of 237
days for the breast tumor simulation and 178 days for the lung
tumor simulation. The constant TVDT using an exponential fit
(Eq. 1s in Supplementary Data) is 153 days for the breast
simulation and 143 days for the lung simulation. Recalling
that the SEER data gave median TVDTs for breast as 252 days
and lung as 135 days, for this metric, the power law fits the
breast cancer data better and the exponential fits the lung
cancer data better.

Metastatic burden correlation
Metastatic burden is an abstract concept that has the units

of volume but does not take up any single particular contin-
uous space. In the populationmodel, it is a scaled version of the
primary tumor in terms of volume and fits the SEER data nicely
with an exponential function. The populationmodel estimates,
for breast and lung tumors, the size of the primary to a
metastatic burden at which current treatment will be futile.
Establishment of metastases is directly related to the number

of tumor cells shed into the circulation (7, 8), and a larger
number of circulating cells corresponds to a poorer prognosis
(9). We parallel this in the tissue-scale model.

To connect the metastatic burden to the CTC fraction, we
look to the literature. Studies by Cristofannilli and colleagues
(10) and Budd and colleagues (11) establish a threshold of
shorter progression-free and overall survival for patients hav-
ing greater than 5 CTCs in 7.5 mL of blood with measurable
metastatic breast cancer. Liu and colleagues (12) also demon-
strates that this value holds as a good prognostic turning point
both before and after initiation of therapy.

If we translate this value to a total CTC count well mixed
within the�5 Lof blood in thehumanbody,weget around3,300
cells. This critical number at which the likelihood of survival
reaches 50% is marked on the CTC population plot in the right
panel of Fig. 5 by the top edge of the horizontal gray box. This
edge indicates a switching point from local to advanced disease.
It is clear from the simulation results that lung cancer achieves
this threshold far more rapidly than breast cancer.
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Figure 3. The distribution of cell
types within the 2 tissue types at
2.5 years postinitiation. The legend
details the colors for each cell type.
The breast tumor (left) shows
around 5% vascular content close
to the edge, which is mostly
occupied by normoxic cells,
whereas the lung tumor (right)
shows around 50% vascular
content throughout and a large
hypoxic fraction. The parameters
for both cases are given in Table 1.

Table 1. The parameters used to fit the estimates for breast and lung tumor growth

Term Parameter Value Scaleda,b

Diffusion Dn 7.3 � 10�9 cm2/s 7.0 � 10�5

Dh 1.7 Dn 1.2 � 10�4

Dv 0.8 Dn 5.6 � 10�5

Proliferation ln(2)/mn 16 h 1.04
ln(2)/mv 60 h; 20 h 0.28; 0.83

Chemotaxis x 1.5 � 10�8 cm2/s 1.4 � 10�4

Conversion an 6 � 10�5 h�1; 4 � 10�3 h�1 0.0014; 0.096
ah 0.7an 0.0010; 0.067
bn 4.2 � 10�7 h�1 1.0 � 10�5

bh 7.8 � 10�7 h�1 1.9 � 10�5

Death dn 1.0 � 10�5 h�1 2.4 � 10�4

dh 7.0 � 10�5 h�1 0.0017
dv 1.0 � 10�5 h�1 2.4 � 10�4

NOTE: All parameters are the same for breast and lung tissueswith the exception of thosemarked in gray; of those, the parameters for
breast are listed first and those for lung are listed second.
aTimescale 24 h.
bLengthscale 3 cm.
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A closer look at parameter combinations
All parameters are fit to maximize the correlation of the 2

metrics, the TVDT and the diameter of the primary tumorwhen
survival fromthemetastatic burden is 50%, by changingonly the
vascular proliferation rate, mv, and the deoxygenation–reoxy-
genation exchange rate, a. If we take a survey of the entire space
of these 2 parameters, we get a clearer idea of how they combine
with each other to affect the tumor's dynamics. The TVDT is
shown in the left panel of Fig. 6 with the fits for the 2 tumors
represented by planes (median values at 252 days for breast and
135 days for lung). The exponentially growing lung tumor is in
thedarkest region, and the slower growingbreast tumor is in the

lighter gray region. There are just a fewparameter combinations
that fit the lung tumor data: where a is large andmv is large [i.e.,
ln(2)/mv is small]. The breast tumor, however, has several
combinations of values that fit. The primary tumor diameter
corresponding to the lethal CTC threshold is shown in the right
panel of Fig. 6 within the same parameter space. Again, the fits
to the 2 tumors are representedbyplanes, and the coloring is the
same. The main trend is that lethal metastases will be shed at
smaller primary diameters when a is large.

The end combination of values chosen for the fits given
in Table 1 is the one that roughly maximizes the correlation
with bothmetrics. This is wheremv is large anda is large for the
lung tumor fit and where mv is small and a is small for the
breast tumor fit.

Discussion
The combined model approach presented here bridges a

broad population-level perspective with a dynamic tissue-level
perspective. Thismethod helps to resolve the differences at the
tissue level between cancers with large differences in growth
dynamics inferred at the population level, such as lung and
breast cancer. The coupling of the 2models is facilitated by the
use of CTCs, but critically, it is the incorporation of a dynamic
vascular response that provides a means to capture the
observed differences in progression.

Much observation, theory, and speculation has led to dif-
ferent ideas on how a tumor grows (1, 13). Variation is
inevitable considering the many different types of cancer, the
multitude of causes, genetic and environmental factors, dif-
ferent time points and phases at observation, etc. Researchers
have reported tumor growth characterized as linear (14, 15),
exponential (16, 17), power law (18, 19), logistic (20), and
Gompertzian (21). In the end, the equation specifics may not
matter unless it changes the description of the dynamics and in
turn the predictive power of the model.

The population-level stochastic model predicts exponential
growth for the metastatic burden, so an exponential was used
to fit the primary tumor as well. However, several different
curves may be fit to the primary tumor to get good correlation.
An investigation of the tissue-scale PDEmodel reveals that the
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Figure 5. The 2 metrics for
correlating the models: TVDT and
number of CTCs. The latter is
associated with the metastatic
burden. The leftmost graph shows
the TVDT (via Eq. 2s in
Supplementary Data) per diameter
of the tumor. The horizontal lines
mark the estimates from the
statistical population model for the
breast (light) and the lung (dark).
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for TVDT correlation with a �3 cm
tumor. Thegraph to the right shows
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Figure 4. Tumor volume versus time for both lung (black) and breast (gray).
The orange curves show power law fits (N¼ atn) for lung with a¼ 4.11 �
10�5, n¼ 2.09, and R¼ 0.978 and breast with a¼ 6.98� 10�6, n¼ 2.24,
and R¼ 0.995. The green dashed curves show exponential fits (N¼ aebt)
for the lung with a¼ 1.17, b ¼ 0.0049 d�1, and R ¼ 0.995 and the breast
with a¼ 0.677, b¼ 0.0045 d�1, and R¼ 0.994. The breast simulation fits
well to apower law, but the curvebecomesmore exponential-likewith the
vascular dynamics of the lung.
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primary tumor may grow exponentially or as a power law
depending on the vascular dynamics. It is found that the
vascular response must be large to sustain an exponentially
growing primary tumor and slows toward power law growth
otherwise. By disconnecting the growth of the primary from
the growth of the CTCs, we allow a varied set of growth laws to
encapsulate the primary, whereas the metastatic burden may
still grow exponentially. The differences in growth occur with
different relative populations of cell types, most notable are the
vascular density and the hypoxic and normoxic fractions.

The vascular density contrastsmarkedly between breast and
lung (cf. Fig. 3), with portions of the tissue of around 5% and
50%, respectively. A sample of histological measurements
using various metrics is compiled from the literature in Table
2, to check for this divergence. All of the values have been
converted to percentages so that they can be compared. The
first 2 metrics show a larger proportion of vasculature in lung
over breast and support our findings. In these comparisons
either measurements from both lung tumors and breast
tumors are given from the same group or the method is
consistent across groups (Chalkley). With the highest micro-
vessel count, however, the breast tumor is seen to have the
higher fraction, which contradicts ourfindings. But in this case,
each measurement is given by a different group with slightly
different methods, the conversion from a count to a percent
assumes the same average vessel size (whichmay not be valid),
and perhaps while the average values are different, the vascu-
lature may reach a saturation so that the highest microvessel
counts are actually quite similar (in which case the results
might be correct but not relevant). The last 3 metrics do not
havemeasures for both lung and breast, sowith the incomplete
information we are unable to compare them.

Although the table shows some indication that lung tumors
may be more vascular, it also points out the great diversity of
quantities caused by a lack of common measure. Although
microvascular density (MVD) for lung has been reported as not
significant for prognosis (22), a Chalkley cutoff of 7 (�28%) for
breast has good prognostic value (23). Given these contrasting
trends by a multitude of measurements, it is unconvincing
whether the degree of vascularity alone is a good predictor for
progression. However, it is well accepted that that the vascu-
lature is densest at the periphery of the tumor (6, 24, 25), which

is seen in the simulated tumors as a peak vascular density close
to the tumor–tissue interface.

In the tissue model, the proportions of normoxic and
hypoxic cells are also quite different from lung tumor to breast
tumor. The smaller vascular response of the breast tumor
correlates with a dominant normoxic fraction, and the larger
vascular response coexists with a dominant hypoxic fraction in
lung. The hypoxic cells are ultimately the source of stimulation
for vasculature. So itmay seem counterintuitive to suggest that
a lung tumor is both more vascular and more hypoxic than a
breast tumor, but it is, in fact, the lack of vasculature that
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median values of 1.9 and 0.8 cm for
breast (light) and lung (dark),
respectively.

Table 2. Measurements of vasculature content
using various methods collected from the
literature

Mean % (range)
Vascularity
measurement Breast Lung

Chalkleya 20 (11–48) 28 (12–60)
21.5 (8.0–44.0)
23.0 (9.3–32.0)
23.0 (8.0–47.0)

MVDb 4.8 (1.1–22.7) 7.9 (3.4–35.0)
HMCb 2.7 (0.7–8.4) 2.5 (0.60–5.3)

3.6 (0.9–7.3)
AMCb 1.7 (0.1–4.2)
VA/TAc 2.7 (2.0–3.8)
BV/TVd 6.6 (2.6–9.0)

NOTE: Values have been converted, as specified by the
footnotes, to be expressed as a percentage from the details
given in the cited references.
aChalkley, counts were divided by 25 to get a percentage
(23, 26–28).
bMVD/AMC/HMC, microvascular density, average, and
highest microvessel count converted by assuming mean
vessel radius is 10 mm and taking into account the size of
the field in which the count was taken (26, 27, 29, 30, 31).
cVA/TA, vessel area/tumor area (32).
dBV/TV, blood volume/tumor volume (33).

Gallaher et al.

Cancer Res; 74(2) January 15, 2014 Cancer Research432



stimulates the call for more. The presence of a large density of
hypoxic cells is significant, as emerging evidence implicates
hypoxia as a key inducer of angiogenesis and metastasis in
tumors (34). As stated previously, an increased vasculature in
the tumor periphery usually correlates with advanced disease,
but when it is in conjunction with high VEGF levels (hypoxic),
the advancement is more pronounced (24). This implies that
the presence of both vasculature and hypoxia leads to more
aggressive tumors, which is what we observe with this model.
Hypoxic cells are also less sensitive to both radiation and
chemotherapy (35, 36), so choice of treatment is affected by
a tumor's oxygen profile (37).
The relative values of cell subtypes are dependent on the

interaction rates between the cell compartments. In the tissue
model, this difference is brought about by 2 main parameters:
the vascular doubling time (mv) and the normoxia–hypoxia
exchange rates (a). It is not surprising that increasing the rate
of proliferation of endothelial cells will lead to a faster TVDT
because a limited vasculature is the main limit on the growth,
but the significance of the normoxia–hypoxia conversion rates
is not immediately clear. The hypoxic compartment must be
populated to keep the vasculature turning over, so we take a
closer look at the total hypoxic turnover (2nd equation in Eq.
A). Using the derivation and assumptions in Supplementary
Data Appendix 4, we solve for the vascular density:

v � 1� s dh=ahð Þ
1þ s

ð3Þ

where s ¼ ahh/ann represents the rate toward reoxygenation
over the rate toward deoxygenation. When s > 1, there is a net
reoxygenation, when s < 1, there is a net deoxygenation, and
when s ¼ 1, there is no net flux to either the hypoxic or
normoxic compartment.
For the lung tumor ah is very large, so we end up with

v � 1/(1 þ s). The s term approaches 1 for the lung tumor
interior, so this gives a vascular content of 50%, which is what
we indeed observe in Fig. 3. For the breast tumor, ah is much
smaller, so the second term in thenumerator is significant. Also,
ah is slightly smaller than dh, so to ensure that the numerator is
not negative,smust be less thanone.Weobserve that this is the
case because the normoxic population is greater than the
hypoxic population for the breast tumor. The end effect is that
this term significantly reduces the numerator and makes the
vasculature much smaller for the breast tumor (�5%). We also
see that the effect of dh on themodel system is captured in Eq. 3.
As the rate of entry into the necrotic compartment is increased,
the growth of the primary slows. The reason is that if more of
thehypoxic fraction goes into the irreversible necrotic state, it is
not present to attract the vasculature.
It turns out that the breast tumor slowly feeds the hypoxic

fraction with a small and positive net hypoxic turnover rate
throughout, whereas the lung tumor has a large hypoxic
turnover at the leading edge, but shifts to a slight reoxygen-
ation in the interior of the tumor. This leads to a maximal
growth rate, with an optimized ratio of normoxic to hypoxic
cells (s ¼ 1). The left panel of Fig. 6 emphasizes that there is
mainly oneway to growmaximally, but slowing the growth can

be accomplished in a variety of ways. Although this result is
basedmainly on themathematics of the system, theremay be a
physical and biological basis. Chaudary and Hill suggest that
mechanisms may exist to promote the invasiveness of acutely
hypoxic cells (38), so there's a parallel where switching between
compartments may promote more aggressiveness than a
gradual shift to hypoxia.

The parameter a also affects the growth of the CTCs
indirectly through the vasculature. The CTC growth equation
is the fourth equation in Eq. A. Because the entry rates into
the circulation from either compartment (bn and bh) are of the
same order of magnitude, CTC growth ultimately depends on
the vasculature. The larger a associated with the lung tumor
leads to about 10 times the vasculature and therefore a faster
growing CTC population.

There has been considerable effort and an increased pop-
ularity in isolating, identifying, and characterizing cancer cells
in the bloodstream for diagnosis and prognosis especially as
assay reliability increases (10–12, 39–41). CTC assays rely on
identifying cells epithelial in origin to those hematopoietic in
origin. The frequency of these cells inmetastatic patients occur
on the order of approximately 1 CTC per 105–108 mononuclear
cells and even lower in patients with localized cancer
(39, 42, 43). A typical estimate for a threshold of poor prognosis
from these references and the number used for the curvefitting
is 5 CTCs per 7.5 mL of blood, although some estimates may be
up to 38 CTCs in an equivalent volume (8). Even a single CTC
detected in 7.5 mL of blood may be associated with the
development of lethal metastases (40), and many cells may
be present that are not tumorigenic (43). What happens to the
CTCs once they have left the primary tumor does not feed back
to the primary tumor, so considering death or fractional
tumorigenicity of CTCs is a simple scaling of the population
modeled here. It is clear that the error involved is large, but no
matter where the threshold line is drawn, it does not change
the underlying interactions and dynamics.

In this model, we have coarsely discriminated between fast
and slow-growing tumors that shed metastases at small and
large sizes, respectively. The results here suggest that tumor
growth is ideally exponential. A less than sufficient angiogenic
support system, however, leads to power law growth. It is not a
simple scaling to relate a primary tumor with power law
growth to metastases that grow exponentially. The CTCs, as
an intermediary, disconnects the populations to bridge the
scales using measurements we can observe.

We find that the breast tumor grows slower, has a minimal
vascular density, a very large normoxic population, and a slow-
growing CTC population. In contrast, the lung tumor grows
faster, has a very large vascular density, a hypoxic population
that is slightly larger than the normoxic population, and amuch
faster growing CTC population. Because of the differences in
vascular response, the progression of these 2 tumors is quite
different. Lung tumors have a greater risk of fatal metastatic
burden at small sizes, whereas a breast tumor diagnosed at a
larger size, may still be considered confined to the primary site.
Perhaps knowing theCTCcountwhen there's a highly vascular
primary lung tumor might indicate the level of progression,
but also finding a larger CTC count than expected when the
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primary is a breast tumor might indicate that it is especially
aggressive and should undergo alternative treatment. There-
fore, CTC counts should be considered in an organ-specific
manner and their importance weighted accordingly.

Bridging population-scale measurements from the SEER
database down to the tissue-scale dynamics has been achieved
through the use of two distinct mathematical modeling
approaches. By matching tumor volume doubling time and
metastatic burden across these scales, we have already gained
significant understanding of the differences between breast
and lung cancer. It is clear is that if wewere able to obtainmore
detailed histological attributes of a patient's primary cancer,
we could make even better predictions with our approach.
Ultimately, this highlights a limitation and therefore a need in
databases such as SEER to incorporate as much information
about a given patient's tumor at the tissue level as possible,
such as distributions of vasculature, necrosis, hypoxia, etc. of
the primary and secondary tumors, as well as CTC counts (as
technology develops). In addition, this endeavor has taught us
the power of bridging multiple scales with different models
and opens a new and exciting line of inquiry in our quest to
better explain and predict cancer growth and progression.
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